Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a

1/ Không có số chính phương dạng aa . Thật vậy với a khác không và bé thua hoặc bằng 9 , aa = 10.a + a = 11.a không thể là số chính phương, vì phân tích ra thừa số nguyên tố, nó có chứa 11 nhưng không chứa 112
2/ Không có số chính phương dạng aaa . Thật vậy, aaa = 100.a + 10.a + a = 111.a = 2.37.a nó chia hết cho 37 nhưng không chia hết cho 372 Do đó aaa không phải là số chính phương.
3/ Không có số chính phương dạng aa...a (Có n chữ số giống nhau). Thật vậy, chữ số tận cùng (Chữ số hàng đơn vị) của số chính phương chỉ có thể là 0, 1, 4, 5, 6, 9.
- Vì a khác 0 nên chữ số tận cùng chỉ có thể là 1, 4, 5, 6, 9.
* Nếu hàng đơn vị là 1 thì chữ số hàng chục không thể là 1 mà là 2 hoặc 8
* Nếu chữ số hàng đơn vị của số chính phương là 4 thì chữ số hàng chục có thể là 4, 6 nhưng chữ số hàng trăm không thể là 4.
* Lập luận cho ba trường hợp a = 5, a = 6 và a = 9
Kết luận: Không có số chính phương nhiều hơn một chữ số mà các chữ số giống nhau.

Gọi số cần tìm là ab điều kiện : a khác 0 ; a , b là chữ số
Theo bài ra , ta có :
a - b = 7 => a = b + 7
ab = ba x 3 + 5 => 10a + b = 30b + 3a + 5 => 7a = 29b + 5 => 7 x ( b + 7 ) 29b + 5 = 7b + 49 = 29b + 5 => 44 = 22b => b = 2
=> a = 7 + 2 = 9
Vậy số cần tìm là : 92
Gọi số cần tìm là aa bởi vì số này chia cho 3 dư 1 nên ta có:
a + a = 3k + 1 ( với k tự nhiên) <=> a = \(\frac{3k+1}{2}\)(1)
Vì a tự nhiên nên k phải là số lẻ (2)
Ta có \(1\le a\le9\)
<=> \(1\le\frac{3k+1}{2}\le9\)
<=> \(0,33\le k\le5,66\)(3)
Từ (2) và (3) => k = (1;3;5)
Thế vào ta được a = (2;5;8)
Vậy số cần tìm là 22;55;88
22 ; 55; 88