![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn C.
Ta có y ' = 3 cos x + 2 sin x + m
Để hàm số đồng biến trên ℝ thì y ' ≥ 0 , ∀ x ∈ ℝ
Với α là góc thỏa mãn
Vậy m ∈ ( 13 ; + ∞ ]
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3
![](https://rs.olm.vn/images/avt/0.png?1311)
Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :
\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là
\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)
Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là :
\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)
Dễ thất điểm O không thuộc d nên ABO là một tam giác.
Tam giác ABO vuông tại O khi và chỉ khi :
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)
Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)
Thay vào trên ta được :
\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)
Vậy \(m=-3\) hoặc \(m=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(y'=\frac{x}{\sqrt{x^2+1}}-m\ge0\) \(\forall x\) \(\Rightarrow\frac{x}{\sqrt{x^2+1}}\ge m\) \(\forall x\)
Đặt \(f\left(x\right)=\frac{x}{\sqrt{x^2+1}}\Rightarrow m\le\min\limits_{x\in R}f\left(x\right)\)
\(f'\left(x\right)=\frac{\sqrt{x^2+1}-\frac{x^2}{\sqrt{x^2+1}}}{x^2+1}=\frac{1}{\left(x^2+1\right)\sqrt{x^2+1}}>0\) \(\forall x\in R\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R
Xét \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\frac{x}{\sqrt{x^2+1}}=\lim\limits_{x\rightarrow-\infty}\frac{1}{-\sqrt{1+\frac{1}{x^2}}}=-1\)
\(\Rightarrow f\left(x\right)>-1\) \(\forall x\Rightarrow\) để hàm số đã cho đồng biến trên R thì \(m\le-1\)
Câu 2:
\(y'=m+\left(m+1\right)sinx\ge0\) \(\forall x\in R\)
\(\Leftrightarrow m\left(1+sinx\right)\ge-sinx\) \(\Leftrightarrow m\ge\frac{-sinx}{1+sinx}\) \(\forall x\in R\)
Đặt \(f\left(t\right)=\frac{-t}{1+t}\Rightarrow m\ge\max\limits_{t\in\left[-1;1\right]}f\left(t\right)\)
\(f'\left(t\right)=\frac{-1}{\left(t+1\right)^2}< 0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-1;1\right]\)
\(\lim\limits_{t\rightarrow-1}\frac{-t}{1+t}=+\infty\)
\(\Rightarrow\) Không tồn tại \(\max\limits_{t\in\left[-1;1\right]}f\left(t\right)\Rightarrow\) không tồn tại m thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
ta tính \(y'=3x^2-6x-m\)
để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R
mà ta có \(y'=3x^2-6x-m\)>0 khi và chỉ khi \(\Delta=b^2-4ac<0\) do hệ số a của y' >0
mà \(\Delta=6^2+12m=36+12m<0\Rightarrow m<-3\)
vậy với m<-3 thì hàm số đồng biến trên R