Tìm tất cả các giá trị của m để hàm số y=cos2x+mx đồng biến trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

15 tháng 4 2017

Chọn C.

Ta có  y ' = 3 cos x + 2 sin x + m

Để hàm số đồng biến trên ℝ thì  y ' ≥ 0 ,   ∀ x ∈ ℝ

Với α   là góc thỏa mãn

Vậy  m ∈ ( 13 ; + ∞ ]

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

22 tháng 1 2017

21 tháng 4 2016

Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :

\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là 

\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)

Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là : 

\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)

Dễ thất điểm O không thuộc d nên ABO là một tam giác.

Tam giác ABO vuông tại O khi và chỉ khi :

\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)

Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)

Thay vào trên ta được :

\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)

Vậy \(m=-3\) hoặc \(m=-1\)

NV
24 tháng 5 2019

Câu 1:

\(y'=\frac{x}{\sqrt{x^2+1}}-m\ge0\) \(\forall x\) \(\Rightarrow\frac{x}{\sqrt{x^2+1}}\ge m\) \(\forall x\)

Đặt \(f\left(x\right)=\frac{x}{\sqrt{x^2+1}}\Rightarrow m\le\min\limits_{x\in R}f\left(x\right)\)

\(f'\left(x\right)=\frac{\sqrt{x^2+1}-\frac{x^2}{\sqrt{x^2+1}}}{x^2+1}=\frac{1}{\left(x^2+1\right)\sqrt{x^2+1}}>0\) \(\forall x\in R\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R

Xét \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\frac{x}{\sqrt{x^2+1}}=\lim\limits_{x\rightarrow-\infty}\frac{1}{-\sqrt{1+\frac{1}{x^2}}}=-1\)

\(\Rightarrow f\left(x\right)>-1\) \(\forall x\Rightarrow\) để hàm số đã cho đồng biến trên R thì \(m\le-1\)

Câu 2:

\(y'=m+\left(m+1\right)sinx\ge0\) \(\forall x\in R\)

\(\Leftrightarrow m\left(1+sinx\right)\ge-sinx\) \(\Leftrightarrow m\ge\frac{-sinx}{1+sinx}\) \(\forall x\in R\)

Đặt \(f\left(t\right)=\frac{-t}{1+t}\Rightarrow m\ge\max\limits_{t\in\left[-1;1\right]}f\left(t\right)\)

\(f'\left(t\right)=\frac{-1}{\left(t+1\right)^2}< 0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-1;1\right]\)

\(\lim\limits_{t\rightarrow-1}\frac{-t}{1+t}=+\infty\)

\(\Rightarrow\) Không tồn tại \(\max\limits_{t\in\left[-1;1\right]}f\left(t\right)\Rightarrow\) không tồn tại m thỏa mãn

24 tháng 5 2019

Câu 1: Tại sao lại tính lim dần tới âm vô cùng mà không phải dương vô cùng ạ?

Câu 2: Cùng thắc mắc với câu 1 ạ

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



15 tháng 10 2015

ta tính \(y'=3x^2-6x-m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

mà ta có \(y'=3x^2-6x-m\)>0 khi và chỉ khi \(\Delta=b^2-4ac<0\) do hệ số a của y' >0

mà \(\Delta=6^2+12m=36+12m<0\Rightarrow m<-3\)

vậy với m<-3 thì hàm số đồng biến trên R