Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.
b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.
c) Hàm số đã cho không xác định khi và chỉ khi .
Hàm số đã cho có tập xác định là R {}.
d) Hàm số đã cho không xác định khi và chỉ khi
Hàm số đã cho có tập xác định là R {}.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ:
\(sin\left(\frac{\pi}{2}.sinx\right)\ne0\Rightarrow\frac{\pi}{2}.sinx\ne k\pi\)
\(\Rightarrow sinx\ne2k\)
Mà \(-1\le sinx\le1\Rightarrow sinx\ne0\Rightarrow x\ne k\pi\)
b/
\(sinx-1\ge0\Leftrightarrow sinx\ge1\Rightarrow sinx=1\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
c/
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow sin4x\ne0\)
\(\Rightarrow x\ne\frac{k\pi}{4}\)
d/
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sinx+cotx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin^2x+cosx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne k\pi\\-cos^2x+cosx+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\cosx\ne\frac{1-\sqrt{5}}{2}\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\pm arccos\left(\frac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\)
e/
\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\Rightarrow x\ne k\pi\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm như bài trên:
\(\left[{}\begin{matrix}5x-45^0=30^0+k360^0\\5x-45^0=-30^0+n360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=15^0+k72^0\\x=3^0+n72^0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}15^0+k72^0< 0\\3^0+n72^0< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k_{max}=-1\\n_{max}=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-57^0\\x=-69^0\end{matrix}\right.\)
So sánh 2 giá trị ta được nghiệm âm lớn nhất \(x=-57^0\)
Nói chung người ta yêu cầu tìm y max
\(sin\left(\frac{\pi}{178}\left(t-60\right)\right)\le1\Rightarrow y\le14\)
\(y_{max}=14\) khi \(sin\left(\frac{\pi}{178}\left(t-60\right)\right)=1\)
\(\Leftrightarrow\frac{\pi}{178}\left(t-60\right)=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow t-60=89+356k\)
\(\Leftrightarrow t=149+356k\)
\(0\le t\le365\Rightarrow0\le149+356k\le365\Rightarrow k=0\)
\(\Rightarrow t=149\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{1) Đ}K:\left\{{}\begin{matrix}sinx\ne0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne m\pi\\x\ne\frac{\pi}{2}+n2\pi\end{matrix}\right.\)
\(2\text{) }ĐK:\left\{{}\begin{matrix}cos\left(2x+\frac{\pi}{3}\right)\ne0\\sinx\ne0\end{matrix}\right.\Leftrightarrow\\ \left\{{}\begin{matrix}2x+\frac{\pi}{3}\ne\frac{\pi}{2}+m\pi\\x\ne n\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{12}+\frac{m\pi}{2}\\x\ne n\pi\end{matrix}\right.\)
\(3\text{) }ĐK:\left\{{}\begin{matrix}\frac{5-3cos2x}{1+sin\left(2x-\frac{\pi}{2}\right)}\ge0\\1+sin\left(2x-\frac{\pi}{2}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5-3cos2x\ge0\\sin\left(2x-\frac{\pi}{2}\right)\ne-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}cos2x\le\frac{5}{3}\left(T/m\right)\\2x-\frac{\pi}{2}\ne\frac{3\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow x\ne\pi+k\pi\)
\(4\text{) }ĐK:\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)\ne0\\cos\left(3x-\frac{\pi}{4}\right)\ne0\\tan\left(3x-\frac{\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+\frac{\pi}{3}\ne a\pi\\3x-\frac{\pi}{4}\ne\frac{\pi}{2}+b\pi\\3x-\frac{\pi}{4}\ne c\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{4}+\frac{b\pi}{3}\\x\ne\frac{\pi}{12}+\frac{c\pi}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{12}+\frac{k\pi}{6}\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
b.
Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:
\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)