Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là \(n\).
Có \(n\)khi chia cho \(3,4,5,6\)có dư lần lượt là \(1,2,3,4\)nên \(n+2\)chia hết cho cả \(3,4,5,6\).
Có \(BCNN\left(3,4,5,6\right)=60\)suy ra \(n+2\in B\left(60\right)\)
\(n+2=60k\)với \(k\inℕ^∗\)
\(\Leftrightarrow n=60k-2\)
mà \(n\)chia hết cho \(11\)nên \(60k-2=11l\)với \(l\inℕ^∗\).
\(\Leftrightarrow k=\frac{11\left(l-5k\right)+2}{5}\)
Xét \(mod5\)thì để \(\left[11\left(l-5k\right)+2\right]⋮5\)thì \(l-5k\equiv3\left(mod5\right)\).
\(\Leftrightarrow l\equiv3\left(mod5\right)\)\(\Rightarrow l=5m+3,m\inℕ\).
\(\Rightarrow k=\frac{11m+7}{12}\Rightarrow m=12x+7\Rightarrow k=11x+7,x\inℕ\).
Khi đó \(n=60\left(11x+7\right)-2=660x+418,x\inℕ\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là a
Ta có:
a + 2 thuộc BC(3; 4; 5; 6}
Ta lại có:
3 = 3
4 = 22
5 = 5
6 = 2.3
=> BCNN(3; 4; 5; 6) = 22.3.5 = 60
=> a + 2 thuộc B(60)
=> a + 2 thuộc {0; 60; 120; 180; 240; 300; 360; 420;...}
=> a thuộc {58; 118; 178; 238; 298; 358; 418...} (Vì a thuộc N)
Mà nhỏ nhất chia hết cho 11 =>a = 418
Vậy...
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(419\)mk giải bài này rồi vào thống kê hỏi đáp của mk sẽ thấy mik lazy viết k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số đó là: a ( a \(\in\)N* )
vì a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
=> a + 2 chia hết cho 3; 4;5;6
=> a + 2 \(\in BC\left(3;4;5;6\right)\)
Mà a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = BCNN(3;4;5;6) = 60
vì a chia hết cho 11
=> a + 2 chia 11 dư 2
Mà 60 không chia 11 dư 2
=> không tìm được a
Gọi số cần tìm là x
Theo đề bài ta có : x chia 3 dư 1 , x chia 4 dư 2 , x chia 5 dư 3 , x chia 6 dư 4 và chia hết cho 11
=> x + 2 chia hết cho 3, 4, 5, 6
=> x + 2 thuộc BC(3, 4, 5, 6)
BCNN(3, 4, 5, 6) = 22 . 3 . 5 = 60
BC(3,4,5,6) = B(60) = { 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x + 2 \(\in\){ 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x \(\in\){ -2 ; 58 ; 118 ; 178 ; ... ; 418 ; 478 ; ... }
x chia hết cho 11 => x \(\in\)B(11) = { 0 ; 11 ; 22 ; ... ; 385 ; 396 ; 407 ; 418 ; ... }
Cả hai tập hợp xuất hiện số 418
=> x = 418
Vậy số cần tìm là 418
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên cần tìm là a
Theo đề toán ta có :
\(a\div3\)dư 1
\(a\div4\)dư 2
\(a\div5\)dư 3
\(a\div6\) dư 4
\(\Rightarrow a+2⋮3;4;5;6\)
\(\Rightarrow a+2\in BCNN\left(3;4;5;6\right)\)
\(3=3\\ 4=2^2\\ 5=5\\ 6=2.3\)
\(BCNN\left(3;4;5;6\right)=2^2.3.5=60\)
Vậy \(a+2=60\Rightarrow a=58\)
Vậy \(a=\left\{58;116;174;232;290;348;406;...\right\}\)
Vì a nhỏ nhất và a chia hết cho 11 nên a là 638
Gọi số cần tìm là x
Theo bài ra ta có: x + 2 chia hết cho 3,4,5,6
=> x + 2 là bội chung của 3,4,5,6
Mà BCNN(3,4,5,6) = 60 nên x + 2 = 60 . n
Do đó x = 60 . n - 2 ; (n = 1;2;3;.....)
Mặt khác xM11 nên lần lượt cho n = 1;2;3;... Ta thấy n = 7 thì x = 418 M11
Vậy số nhỏ nhất cần tìm là 418
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số phải tìm là x :
Theo bài ra ta có x+2 chia hết cho 3;4;5;6
suy ra x+2 E BC ( 3;4;5;6)
do đó x ko bằng 60n-2
suy ra n=1;2;3;...
mặt khác x chia hết cho11 lần lượt chia hết cho n=1;2;3;..
ta thấy x=7 thì x=418 chia hết cho 11
vậy số nhỏ nhất phải tìm là 418
Gọi số tn nhỏ nhất đó là a
ta có a:3 dư 1: a:4 dư 2; a:5 dư 3; a:6 dư 4; a:11
a-1:3; a-2:4; a-3:5, a-4:6
a-1+3:3; a-2+4:4; a-3+5:5; a-4:6
a-2:3; 4; 5; 6
a-2 là BCNN(3; 4;5; 6)
a-2=B(
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Gọi số cần tìm à x ( x thuộc N*)
Theo bài ra: x chia 3,4, 5,6 có số dư lần lượt là 1,2,3,4
=> x+2 chia hết cho 3,4,5,6
=> x+2 thuộc bội chung của 3,4,5,6
Mà BCNN(3,4,5,6) = 60
=> BC(3,4,5,6) = BC(60)
=> x+2 thuộc vào BC(60)
=> x+2 = 60k ( với k thuộc N* )
=> x= 60k-2 (*)
Mà x chia hết vho 11
=> 60k-2 c/h cho 11
=> 60k-2-418 c/h cho 11
=> 60k-420 c/h cho 11
=> 60(k-7) c/h cho 11
=> k-7 c/h cho 11 (do (60,11)=1)
=> k-7 = 11a (với a thuộc N*)
=> k = 11a+7
Thay k = 11a+7 vào (*) ta đc:
x = 60(11a+7)-2
=> x = 60.11a + 60.7 - 2
=> x = 660a + 418
Vậy dạng tổng quát của số thỏa mãn đề bài là 660a + 418 (với a thuộc N*)