Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48

Gọi số đã cho là \(\overline{xy}\) với x,y là các chữ số từ 0 tới 9, x khác 0
Do hai lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị là 5 đơn vị nên:
\(y-2x=5\) (1)
Do đổi chỗ các chữ số thì được số mới lớn hơn số cũ 63 đơn vị nên ta có:
\(\overline{yx}-\overline{xy}=63\Rightarrow\left(10y+x\right)-\left(10x+y\right)=63\)
\(\Rightarrow y-x=7\) (2)
Từ (1) và (2) ta có hệ:
\(\begin{cases}y-2x=5\\ y-x=7\end{cases}\) \(\Rightarrow\begin{cases}x=2\\ y=9\end{cases}\)
Vậy số đó là 29
Gọi số cần tìm có dạng là \(\overline{ab}\)
(Điều kiện: a,b∈N*; 0<a<=9; 0<=b<=9)
Hai lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị là 5 đơn vị nên b-2a=5
=>b=2a+5
Nếu đổi chỗ hai chữ số của số ban đầu thì số mới lớn hơn số ban đầu là 63 đơn vị nên ta có: \(\overline{ba}-\overline{ab}=63\)
=>10b+a-10a-b=63
=>9b-9a=63
=>b-a=7
=>2a+5-a=7
=>a+5=7
=>a=7-5=2(nhận)
\(b=2a+5=2\cdot2+5=9\) (nhận)
vậy: Số cần tìm là 29

Gọi số đó là ab
Ta có a+b=6
Lại có 10a + b - 10b - a=18
=>a=4, b=2
Vậy số cần tìm là 42

Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 5 ...=> \(a^2+b^2=5\) (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 36 đơn vị => ba-ab=36
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm

Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: b=3a và 10b+a-10a-b=18
=>3a-b=0 và -9a+9b=18
=>a=1 và b=3

- Gọi chữ số hàng chục của số đó là x ( 0 < x < 10 )
- Gọi chữ số hàng đơn vị là y ( \(0\le y< 10\) )
-> Số tự nhiên đó là : \(\overline{xy}\)
Theo đề bài số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình : \(\overline{xy}=9\left(x+y\right)\left(I\right)\)
Theo đề bài nếu đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình : \(\overline{xy}-63=\overline{yx}\left(II\right)\)
- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}\overline{xy}=9\left(x+y\right)\\\overline{xy}-63=\overline{yx}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x+y=9x+9y\\10x+y-63=10y+x\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x+y-9x-9y=0\\10x+y-10y-x=63\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-8y=0\\9x-9y=63\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=8y\\8y-y=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=8.1=8\\y=1\end{matrix}\right.\) ( TM )
Vậy chữ số cần tìm là 81 .

Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 50 ...=> a2+b2=5a2+b2=50 (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 54 đơn vị => ba-ab=54
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm
Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))
Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:
\(10a+b=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow10a+b-9a-9b=0\)
\(\Leftrightarrow a-8b=0\)(1)
Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:
\(10b+a+63=10a+b\)
\(\Leftrightarrow10b+a+63-10a-b=0\)
\(\Leftrightarrow-9a+9b=-63\)
\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)
\(\Leftrightarrow a-b=7\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)
Vậy: Số ban đầu là 81
Gọi số cần tìm là \(\overline{ab}\)
Theo bài ta có :
\(\overline{ab}=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow a=8b\)
\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)
Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị
\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)
\(\Leftrightarrow10a+b-10b-a=63\)
\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
Vậy.....