![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài đúng, trích trong đề thi HSG nên đừng nói là sai đề nha!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
n2+5n+1=n(n+5)+1
Với n E N thì n+5>1
=> n2+5n+1 thì n=1
n=1 mình chắc luôn
bạn gặp trong violympic vòng 13 đúng ko
nhớ k nha(@_@)
![](https://rs.olm.vn/images/avt/0.png?1311)
n2+ 5n+ 1= n.n+ 5.n+ 1
= (5+ n). n+ 1 là số nguyên tố
Mà n nguyên dương nhỏ nhất nên (5+ n). n là hợp số
Suy ra (5+ n). n+ 1= 7
(5+ n). n= 6
=> n= 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta phải tìm số nguyên dương n để A là số nguyên tố. Với:
\(A=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{-\left(60^2-n^2\right)}{60-n}+\frac{60^2}{60-n}=-\left(60+n\right)+\frac{3600}{60-n}..\)
Muốn Alà số nguyên tố, trước hêt A phải là số nguyên . Như vậy (60 - n) phải là ước nguyên dương của 3600, suy ra n < 60 và 3600 : (60 - n) phải lớn hơn 60 + n (Để A dương) đồng thời phải thỏa mãn A là số nguyên tố. Ta kiểm tra lần lượt các giá trị của n là ước của 60 (sao cho 60 - n là ước của 3600)
- Trường hợp 1: n = 30 Ta có A = -90 + 3600 : 30 = 30 không là số nguyên tố
- Trường hợp 2: n = 15 Ta có A = -75 + 3600 : 45 = 5 là số nguyên tố . Vậy n = 15 là giá trị thích hợp
- Trường hợp 3: n = 12 Ta có A = - 72 + 3600 : 48 = 3 là số nguyên tố . Vậy n = 12 là giá tị thích hợp.
- Trường hợp 4: n = 6 , n = 5, n = 3, n =2 thì A không phải là số nguyên, loại. Trường hợp n = 1 thì A âm, loại.
Trả lời: Có hai giá trị của n thỏa mãn yêu cầu bài ra : n = 12 và n = 15