\(\frac{2a+8}{5}+\frac{-a-7}{5}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
23 tháng 4 2019

Ta có \(M=\frac{2a+8}{5}+\frac{-a-7}{5}=\frac{2a+8-a-7}{5}=\frac{a+1}{5}\)

Để \(M\inℤ\Leftrightarrow\frac{a+1}{5}\inℤ\Leftrightarrow a+1⋮5\Leftrightarrow a+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau :

a+11-15-5
a0-24-6

Vậy \(a\in\left\{0;-2;4;-6\right\}\)

30 tháng 8 2020

a. \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)

\(\Leftrightarrow\left(6-8b\right)\left(3-3a\right)=\left(2-2a\right)\left(9-12b\right)\)

\(\Leftrightarrow18-18a-24b+24ab=18-24b-18a+24ab\) ( đúng )

=> Đpcm

b. Gọi d là ƯCLN của n + 3 và 2n + 5

n + 3 chia hết cho d

2n + 5 chia hết cho d

\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow2\left(n+3\right)-2n-5⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)=> d = 1

=> Đpcm

30 tháng 8 2020

a) Giả sử \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)là đúng

Ta cần chứng minh \(\frac{2-2a}{6-8b}-\frac{3-3a}{9-12b}=0\)

\(\Rightarrow\frac{2\left(1-a\right)}{2\left(3-4b\right)}-\frac{3\left(1-a\right)}{3\left(3-4b\right)}=0\)

\(\Rightarrow\frac{1-a}{3-4b}-\frac{1-a}{3-4b}=0\)( đúng )

Vậy ta có đpcm

b) Gọi d là ƯCLN( n + 3 ; 2n + 5 )

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+3;2n+5\right)=1\)

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản ( đpcm )

4 tháng 3 2019

Bài 1 : \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

* Ta có : \(\frac{-4}{8}=\frac{x}{-10}\)

\(\Rightarrow(-4)(-10)=x\cdot8\)

\(\Rightarrow x=\frac{(-4)\cdot(-10)}{8}=5\)

* Ta có : \(\frac{-4}{8}=\frac{-7}{y}\)

\(\Rightarrow-4\cdot y=(-7)\cdot8\)

\(\Rightarrow-4\cdot y=-56\)

\(\Rightarrow y=(-56):(-4)=14\)

* Ta có : \(\frac{-4}{8}=\frac{z}{-24}\)

\(\Rightarrow(-4)\cdot(-24)=z\cdot8\)

\(\Rightarrow96=z\cdot8\)

\(\Rightarrow z=96:8=12\)

Vậy : ...

P/S : Lần sau nhớ đăng 1 hay 2 bài thôi chứ nhiều quá làm sao hết

4 tháng 3 2019

\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

\(\text{ Ta có : }\frac{-4}{8}=\frac{-1}{2};\frac{x}{-10}=\frac{-x}{10};\frac{z}{-24}=\frac{-z}{24}\)

\(\text{+) }\frac{-1}{2}=\frac{-x}{10}\)

\(\Leftrightarrow\left(-1\right).10=2.\left(-x\right)\)

\(\Leftrightarrow-x=\frac{\left(-1\right).10}{2}\)

\(\Leftrightarrow-x=-5\)

\(\Leftrightarrow x=5\)

\(\text{+) }\frac{-1}{2}=\frac{-7}{y}\)

\(\Leftrightarrow\left(-1\right).y=2.\left(-7\right)\)

\(\Leftrightarrow y=\frac{2.\left(-7\right)}{-1}\)

\(\Leftrightarrow y=14\)

\(\text{+) }\frac{-1}{2}=\frac{-z}{24}\)

\(\Leftrightarrow\left(-1\right).24=2.\left(-z\right)\)

\(\Leftrightarrow-z=\frac{\left(-1\right).24}{2}\)

\(\Leftrightarrow-z=-12\)

\(\Leftrightarrow z=12\)

2 tháng 12 2017

-4/8 nha các bạn

22 tháng 1

Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 ​ =x−10× −10 x ​ . Để làm rõ, 48 4 8 48 8 4 ​ có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 ​ =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 ​ =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z ​ , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2  =0, tức là 𝑛 ≠ 2 n  =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 ​ . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 ​ =3+ n−2 4 ​ Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 ​ phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.