Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
A=(4n+6n+8n+10n)-(3n+5n+7n+9n)
Xét: 4;6;8;10 đều là các số chẵn nên 4n;6n;8n;10n cũng đều là các số chẵn.
\(\Rightarrow\)Tổng của 4 lũy thừa này là số chẵn và chia hết cho 2.
Xét: 3;5;7;9 đều là các số lẻ nên 3n+5n+7n+9n cũng đều là các số lẻ.
Mà tổng của 4 số lẻ sẽ bằng 1 số chẵn nên tổng đó sẽ chia hết cho 2.
Vì 4n+6n+8n+10n chia hết cho 2
3n+5n+7n+9n chia hết cho 2.
\(\Rightarrow\)A chia hết cho 2. (A chia 2 dư 0).
Ta thấy 2003n và 2005n là số lẻ \(\forall n\in N\).
Xét 2 trường hợp:
+ n = 0: Khi đó B = 3, là số lẻ nên B chia cho 2 dư 1
+ n \(\ne\) 0: Khi đó 2004n là số chẵn \(\Rightarrow\) B là số chẵn \(\Rightarrow\) B chia cho 2 dư 0.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Gọi số tự nhiên thỏa mãn những tính chất của đề bài là $n$
Vì $n$ chia $17$ dư $4$ , chia $19$ dư $11$ nên:
\(n=17k+4=19t+11(k,t\in\mathbb{N})\)
\(\Rightarrow 19t+7=17k\vdots 17\)
\(\Leftrightarrow 17t+2t+7\vdots 17\)
\(\Leftrightarrow 2t+7\vdots 17\)
Do đó \(2t+7=17m\) với $m$ là một số tự nhiên nào đó.
\(\Leftrightarrow 2t=17m-7\)
Vì $2t$ chẵn nên $17m-7$ cũng chẵn. Do đó $m$ lẻ
\(\Rightarrow m\geq 1\Rightarrow 2t=17m-7\geq 10\)
\(\Leftrightarrow t\geq 5\)
Suy ra \(n=19t+11\geq 19.5+11=106\)
Thử lại thấy đúng
Vậy số $n$ nhỏ nhất thỏa mãn đkđb là $106$
Bài 3:
-Nếu $p$ chẵn thì $p+10$ chẵn. Mà $p+10>2$ nên $p+10$ không thể là số nguyên tố.
-Nếu $p$ lẻ thì $p+3$ chẵn. Mà $p+3>2$ nên $p+3$ không thể là số nguyên tố.
Vậy không tồn tại số nguyên tố $p$ nào thỏa mãn $p+3$ và $p+10$ đồng thời là số nguyên tố.
Bài 2:
Số tự nhiên chia 11 dư 12 nghĩa là chia 11 dư 1 nhé bạn.
Gọi số tự nhiên thỏa mãn đề bài là $n$
Theo bài ra ta có: \(n=7k+5=11t+1\)
\(\Rightarrow 11t-4=7k\vdots 7\)
\(\Leftrightarrow 11t-4-7\vdots 7\)
\(\Leftrightarrow 11(t-1)\vdots 7\Leftrightarrow t-1\vdots 7\) (do 7 và 11 nguyên tố cùng nhau)
Do đó \(t-1=7m\Leftrightarrow t=7m+1\)
\(\Rightarrow n=11t+1=11(7m+1)+1=77m+12\)
Vậy số n chia cho 77 dư 12
Bài 4:
\(S=2^n+3^n+4^n+5^n+6^n\)
Với \(n\in\mathbb{N}^* \Rightarrow \left\{\begin{matrix} 2^n \text{ chẵn}\\ 3^n\text{ lẻ}\\ 4^n \text{chẵn}\\ 5^n \text{lẻ}\\ 6^n\text{chẵn}\end{matrix}\right.\)
\(\Rightarrow S=2^n+3^n+4^n+5^n+6^n\) là một số chẵn
Do đó \(S\vdots 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có : 5xy + 2x - 5y = 7
=> x(5y - 2) - 5y + 2 = 7 + 2
=> x(5y - 2) - (5y - 2) = 9
=> (5y - 2)(x - 1) = 9
Với \(x;y\inℕ\Rightarrow\hept{\begin{cases}5y-2\inℕ^∗\\x-1\inℕ^∗\end{cases}}\)
=> có 9 = 3.3 = 1.9
Lập bảng xét các trường hợp
x - 1 | 1 | 9 | 3 |
5y - 2 | 9 | 1 | 3 |
x | 2 | 10 | 4(tm) |
y | 2,2 | 0,6 | 1(tm) |
Vậy x = 4 ; y = 1
2) A = 75.(42018 + 42017 + .... + 42 + 4) + 25
Đặt B = 42018 + 42017 + .... + 42 + 4
Khi đó A = 75B + 25
<=> 4B = 42019 + 42018 + .... + 43 + 42
Lấy 4B trừ B cả 2 vế ta có :
4B - B = ( 42019 + 42018 + .... + 43 + 42) - (42018 + 42017 + .... + 42 + 4)
3B = 42019 - 4
=> B = \(\frac{4^{2019}-4}{3}\)
=> A = \(75\frac{4^{2019}-4}{3}+25=25.\left(4^{2019}-4\right)+25=25\left(4^{2019}-3\right)=25.4^{2019}-75\)
Vì \(25.4^{2019}⋮4^{2019}\Rightarrow25.4^{2019}-75:4^{2019}\text{ dư 75 }\Rightarrow A:4^{2019}\text{ dư 75}\)
Vậy số dư khi A chia cho 42019 là 75