![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nope biết làm dư thôi chứ tròn làm đc
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)
\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)
\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)
\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)
\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)
Vì \(7⋮7\)
\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)
\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1
hay \(A\) chia 7 dư 1
Vậy A chia 7 dư 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)
\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))
Ta thực hiên phép chia :
\(A=\frac{2^{2018}}{2^{2016}-1}\)
\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)
Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A =1 + (2+22 +23)+(24+25+26) +........+ (22014+22015+22016)
= 1 +2(1+2+4) +24(1+2+4) +.......+22014(1+2+4)
=1 + 7(2+24 +......+22014)
=> A chia cho 7 dư 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(A=1+7\cdot2+7\cdot2^4+...+7\cdot2^{2014}\)
\(A=1+7\cdot\left(2+2^4+...+2^{2014}\right)\) chia 7 dư 1
bạn ơi dư 1 nha