K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

\(\left(7^7\right)^7=7^{49}\)

7^1 =/ 7 (mod 15)

7^2 =/ 7^2 =/ 4 (mod 15)

7^4 =/ 4^2 =/ 1 (mod 15)

7^44 =/ 1^11 =/ 1 (mod 15)

7^49 = 7^1 * 7^4 * 7^44 =/ 7 * 1 * 1 = 7 (mod 15)

Vậy \(\left(7^7\right)^7\)chia 15 dư 7 

*Chú thích: =/ là kí hiệu: (đồng dư) 7^1 7 (mod 15) được hiểu là: 7^1 chia 15 dư 7

6 tháng 10 2016

Tìm số dư : Trong máy tính CASIO fx=570VN PLUS 

VD: tìm số dư của phép chia 49 cho 4.

\(4\rightarrow9\rightarrow ALPHA\rightarrow\frac{ }{ }\left(\div R\right)\rightarrow4\rightarrow=\)

25 tháng 6 2018

a) \(\dfrac{-1}{3}\cdot2\cdot\dfrac{-1}{3}=\left(\dfrac{-1}{3}\right)^2\cdot2=\dfrac{1}{9}\cdot2=\dfrac{2}{9}\)

c) \(\dfrac{8^4}{4^4}=\left(\dfrac{8}{4}\right)^4=2^4=16\)

d) \(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)

17 tháng 8 2019

a) \(11^9+12^9+13^9+14^9+15^9+16^9\)

\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)

\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)

\(=...1+...2+...3+...4+...5+...6\)

\(=...1\)

Vậy biểu thức trên có chũ số tận cùng là 1

17 tháng 8 2019

b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)

\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)

\(=...5+...6+...3+...8+...9+...9+...0+...1\)

\(=...1\)

Vậy biểu thức trên có chữ số tận cùng là 1

29 tháng 8

a cần chứng minh rằng \(M = 125^{7} - 625^{2} - 25^{9}\) chia hết cho 99.

Bước 1: Tách 99 thành thừa số nguyên tố

Ta có \(99 = 3 \times 33\), và 33 lại có thể phân tích thành \(33 = 3 \times 11\). Vậy \(99 = 3^{2} \times 11\). Để chứng minh \(M\) chia hết cho 99, ta sẽ chứng minh \(M\) chia hết cho cả 9 và 11.

Bước 2: Chứng minh \(M\) chia hết cho 9

Ta xét \(M m o d \textrm{ } \textrm{ } 9\):

  • \(125 \equiv 8 m o d \textrm{ } \textrm{ } 9\)
  • \(625 \equiv 4 m o d \textrm{ } \textrm{ } 9\)
  • \(25 \equiv 7 m o d \textrm{ } \textrm{ } 9\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 9 = \left(\right. 8^{7} - 4^{2} - 7^{9} \left.\right) m o d \textrm{ } \textrm{ } 9\)

  • \(8^{7} m o d \textrm{ } \textrm{ } 9\): Vì \(8 \equiv - 1 m o d \textrm{ } \textrm{ } 9\), ta có \(8^{7} \equiv \left(\right. - 1 \left.\right)^{7} \equiv - 1 m o d \textrm{ } \textrm{ } 9\).
  • \(4^{2} m o d \textrm{ } \textrm{ } 9 = 16 m o d \textrm{ } \textrm{ } 9 = 7 m o d \textrm{ } \textrm{ } 9\).
  • \(7^{9} m o d \textrm{ } \textrm{ } 9\): Vì \(7^{3} \equiv 1 m o d \textrm{ } \textrm{ } 9\), ta có \(7^{9} \equiv 1^{3} = 1 m o d \textrm{ } \textrm{ } 9\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. - 1 - 7 - 1 \left.\right) m o d \textrm{ } \textrm{ } 9 = - 9 m o d \textrm{ } \textrm{ } 9 = 0\)

Do đó, \(M\) chia hết cho 9.

Bước 3: Chứng minh \(M\) chia hết cho 11

Ta xét \(M m o d \textrm{ } \textrm{ } 11\):

  • \(125 \equiv 4 m o d \textrm{ } \textrm{ } 11\)
  • \(625 \equiv 9 m o d \textrm{ } \textrm{ } 11\)
  • \(25 \equiv 3 m o d \textrm{ } \textrm{ } 11\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 11 = \left(\right. 4^{7} - 9^{2} - 3^{9} \left.\right) m o d \textrm{ } \textrm{ } 11\)

  • \(4^{7} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 4 mod 11:
    \(4^{1} \equiv 4 m o d \textrm{ } \textrm{ } 11 , 4^{2} \equiv 16 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 4^{3} \equiv 20 \equiv 9 m o d \textrm{ } \textrm{ } 11 , 4^{4} \equiv 36 \equiv 3 m o d \textrm{ } \textrm{ } 11 , 4^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
    Vậy \(4^{7} = 4^{5} \times 4^{2} \equiv 1 \times 5 = 5 m o d \textrm{ } \textrm{ } 11\).
  • \(9^{2} m o d \textrm{ } \textrm{ } 11 = 81 m o d \textrm{ } \textrm{ } 11 = 4 m o d \textrm{ } \textrm{ } 11\).
  • \(3^{9} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 3 mod 11:
    \(3^{1} \equiv 3 m o d \textrm{ } \textrm{ } 11 , 3^{2} \equiv 9 m o d \textrm{ } \textrm{ } 11 , 3^{3} \equiv 27 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 3^{4} \equiv 15 \equiv 4 m o d \textrm{ } \textrm{ } 11 , 3^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
    Vậy \(3^{9} = 3^{5} \times 3^{4} \equiv 1 \times 4 = 4 m o d \textrm{ } \textrm{ } 11\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 5 - 4 - 4 \left.\right) m o d \textrm{ } \textrm{ } 11 = - 3 m o d \textrm{ } \textrm{ } 11 = 8\)

Do đó, \(M ≢ 0 m o d \textrm{ } \textrm{ } 11\), tức là \(M\) không chia hết cho 11.

Kết luận:

Dựa trên phép tính trên, ta thấy rằng \(M\) chia hết cho 9 nhưng không chia hết cho 11, vì vậy \(M\) không chia hết cho 99.

29 tháng 8

Tham khảo

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

14 tháng 8 2021

Trả lời:

16- 224 

= ( 24 )7 - 224 

= 228 - 224 

= 224 ( 24 - 1 )

= 224 . 15 \(⋮\) 15 ( vì  15\(⋮\)15 )

Vậy 167 - 224 chia hết cho 15

14 tháng 8 2021

CMR: \(16^7\) \(-\) \(2^{24}\) \(⋮\) \(15\)

=    \(\left(2^4\right)^7\)  \(-\)  \(2^{24}\)

=     \(2^{4.7}\)  \(-\)  \(2^{24}\)

=     \(2^{28}\) \(-\)  \(2^{24}\) 

=   \(2^{24}\) \(.\) (  \(2^8\) \(+\) \(1\))

=    \(2^{24}\)  \(.\)   \(257\)

=>    \(⋮̸\) \(15\)

- Hok T - 

28 tháng 1 2020

Số dư của \(109^3=1295029\) chia cho \(7\) là \(1\).

Mà lại có: \(109^{324}=\left(109^3\right)^{115}\)

\(\Rightarrow109^{345}\)chia cho \(7\) dư \(1\)