\(x^3-3x^2+5x+a\) chia hết cho đa thức x-3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Hỏi đáp Toán

20 tháng 10 2017

mk giải cách khác bn kia:

C1: phương pháp xét giá trị riêng

Do \(x^3-3x^2+5x+a=\left(x-3\right).Q\left(x\right)\)đúng với mọi x nên ta đặt x = 3 thì \(3^3-3.3^2+5.3+a=0\Rightarrow a=-15\)

C2: dùng sơ đồ Horner, bn nên lm theo cách này hơn; đặt x = k = 3

1 -3 5 a
k = 3 1 0 5 0

Theo lược đồ ta thấy 3.5+a=0\(\Leftrightarrow a=-15\)

C3: có thể sử dụng phương pháp hệ số bất định (bn tự giải)

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

24 tháng 2 2017

học hệ số bất định chưa z?

25 tháng 2 2017

thôi mình cứ làm đi,để cho mình ôn lại kiến và giúp bạn ấy học nữa .vui

28 tháng 9 2019

x^4 -5x^2+a x^2+3x+2 x^2-3x+2 x^4-3x^3+2x^2 - 3x^3-7x^2+a 3x^3-9x^2+6x - 2x^2-6x+a 2x^2-6x+4 - a-4

Để \(x^4-5x^2+a\)chia hết cho \(x^2-3x+2\)\(\Leftrightarrow a-4=0\)

                                                                                   \(\Leftrightarrow a=4\)

Vậy a=4 để ....

28 tháng 9 2019

Cách 2 xét giá trị riêng

Đặt \(f\left(x\right)=x^4-5x^2+a\) 

Vì \(f\left(x\right)⋮x^2-3x+2\)

\(\Rightarrow f\left(x\right)=\left(x^2-3x+2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-3+2\right)q\left(1\right)\\f\left(2\right)=\left(2^2-3.2+2\right)q\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=0\left(1\right)\\f\left(2\right)=0\left(2\right)\end{cases}}\)

(1) xảy ra \(\Leftrightarrow1^4-5.1^2+a=0\)

\(\Leftrightarrow-4+a=0\)

\(\Leftrightarrow a=4\left(3\right)\)

(2) xảy ra \(\Leftrightarrow2^4-5.2^2+a=0\)

\(\Leftrightarrow-4+a=0\)

\(\Leftrightarrow a=4\left(4\right)\)

Từ (3) và(4) \(\Rightarrow a=4\)

Vậy ...

20 tháng 4 2017

Đề phép chia hết thì dư a - 30 phải bằng 0 tức là

a - 30 = 0 => a = 30

Vậy a = 30.


3 tháng 8 2017

a) 541 + (218 - x) = 735

Suy ra 218 - x = 735 - 541 hay 218 - x = 194.

Do đó x = 218 - 194. Vậy x = 24.

b) 5(x + 35) = 515 suy ra x + 35 = 515 : 5 = 103.

Do đó x = 103 - 35 =68.

c) Từ 96 - 3(x + 1) = 42 suy ra 3(x + 1) = 96 - 42 = 54. Do đó x + 1 = 54 : 3 = 18. Vậy x = 18 - 1 hay x = 17.

d) Từ 12x - 33 = 32 . 33 hay 12x - 33 = 243 suy ra 12x = 243 + 33 hay 12x = 276. Vậy x = 23.

19 tháng 10 2018

\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)

Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)

\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)

Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)

Chúc bạn học tốt ~ 

a: \(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1+a-4⋮3x+1\)

=>a-4=0

hay a=4

c: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

20 tháng 8 2017

a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5

b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4

c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:

n-2 n
-1 1
1 3
-3 -1
3 5

Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết

24 tháng 8 2017

thank you!!