\(\sqrt{x}+\sqrt{y}=9\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Vì x:y có vai trò như nhau nên ta giả sử \(x\le y\)

\(\Rightarrow\sqrt{x}\le\sqrt{y}\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\) hay \(x\le4,5^2=20,25\)

Lại có x là số chính phương nên \(x\in\left(1;4;9;16\right)\)

Ta có bảng 

x14916
y64493625

Cái kết quả đó thì bạn tự thay vào rồi tính nhé

Vậy.................................................................................................................................

28 tháng 11 2017

Cái này bạn lấy ở đâu vậy?

27 tháng 5 2019

Vào link này nhé ,mình tìm cả max và min luôn

https://olm.vn/hoi-dap/detail/221940896077.html

Hoặc trong câu hỏi tương tự cũng có 

6 tháng 7 2019

a) Có \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{\pm\sqrt{2}}{2}\)

b) Áp dụng bđt Cô-si :

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

Chứng minh tương tự rồi cộng vế ta có :

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

6 tháng 7 2019

a) Theo BĐT Bunhiacopxki suy ra \(2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Do đó suy ra \(-\sqrt{2}\le x+y\le\sqrt{2}\)

b) Đặt \(\frac{1}{\sqrt{x}}=a;\frac{1}{\sqrt{y}}=b;\frac{1}{\sqrt{z}}=c\)

Cần chứng minh \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) (đúng)

Xảy ra đẳng thức khi a = b = c hay x = y = z

24 tháng 5 2018

đề có sai ko

6 tháng 6 2018

uk mình bấm lộn phải là

x+y^2+9=2*(\(\sqrt{x-3}\)+3*\(\sqrt{y^2+2}\))