![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)
Nếu \(z\ge3\) thì \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{16}{xyz}< \dfrac{1}{3}+\dfrac{16}{27}< 2\). Suy ra z=1 hoặc z=2
❄z=1. Phương trình trở thành \(2xy=x+y+17\Leftrightarrow4xy-2x-2y-34=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=35=35.1=7.5\) ( do x>y)
suy ra (x,y)=(18,1) hoặc (4,3). Ta thu được (x,y,z)=(18,1,1) hoặc (4,3,1) cùng các hoán vị tương ứng vì vai trò 3 biến như nhau
❄z=2. Có lẽ tương tự [?:v)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)
\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)
Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)
\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)
Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.
Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì x3 +y3 +z3 =495 < 83 =>1 \(\le x,y,z\le7\)
Áp dụng đẳng thức x3+y3+z3 + 3xyz = (x+y+z)(x2+y2+z2-xy-yz-xz)
=>x3+y3+z3 = (x+y+z)(x2+y2+z2-xy-yz-xz) - 3xyz
<=> 495 = 15 (x2+y2+z2-xy-yz-xz) - 3xyz
<=> 165 = 5(x2+y2+z2-xy-yz-xz) - xyz
=>xyz chia hết cho 5 , vì \(\le x,y,z\le7\) và x,y,z có vai trò như nhau , ta giả sử x= 5 . Thay vào phương trình , ta suy ra
yz=21 và y+z=10 =>y=3 , z=7 hoặc z=3 , y=7 , do vai trò của x,y,z như nhau nên a tìm được (x,y,z) = (5,3,7) và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{y-x}{xy}=\frac{1}{3}\Leftrightarrow3y-3x=xy\Leftrightarrow3x+xy-3y=0\Leftrightarrow x\left(y+3\right)-3\left(y+3\right)=-9\Leftrightarrow\left(x-3\right)\left(y+3\right)=-9\)
Vì x,y nguyên nên x - 3 và y + 3 là ước của -9. Ta có bảng:
x-3 | -9 | -3 | -1 | 1 | 3 | 9 |
y+3 | 1 | 3 | 9 | -9 | -3 | -1 |
x | -6 (loại) | 0 (loại) | 2 (TM) | 4 (TM) | 6 (TM) | 12 (TM) |
y | -2 (loại) | 0 (loại) | 6 (TM) | -12 (loại) | -6 (loại) | -4 (loại) |
Vậy nghiệm nguyên dương của phương trình là (x;y) = (2;6).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)
Ta có VP là số nguyên nên VT cũng phải là số nguyên
Giả sử \(yz=a^2\) thì VT không phải số nguyên
Nên yz không phải số chính phương.
Nên để VT là số nguyên thì chỉ có thể là O
\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)
\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương
Vậy PT vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.