![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0
Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0
<=> x = 1/2y và 1/2y = 1 và z = 1.
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
Em chỉ giải 1 ví dụ thôi ạ , mấy cái còn lại giải theo cách tương tự
\(x^4+4y^4=2z^4\)
Dễ thấy \(x^4\)là số chẵn nên x là số chẵn
Đặt \(x=2a_1\left(a_1\inℕ^∗\right)\)
\(\Rightarrow\left(2a_1\right)^4+4y^4=2z^4\)
\(\Leftrightarrow16a_1^4+4y^4=2z^4\)
\(\Leftrightarrow8a_1^4+2y^4=z^4\)
Dễ thấy z4 chẵn nên z chẵn
Đặt \(z=2c_1\left(c\inℕ^∗\right)\)
Thì khi đó \(8a_1^4+2y^4=\left(2c_1\right)^4\)
\(\Leftrightarrow8a^4_1+2y^4=16c_1^4\)
\(\Leftrightarrow4a_1^4+y^4=8c_1^4\)
Dễ thấy y4 chẵn nên y chẵn
Đặt \(y=2b_1\left(b\inℕ^∗\right)\)
Khi đó pt \(4a_1^4+\left(2b_1\right)^4=8c_1^4\)
\(\Leftrightarrow4a^4_1+16b_1^4=8c_1^4\)
\(\Leftrightarrow a_1^4+4b_1^4=2c_1^4\)
Như vậy thì bộ số \(\left(a_1;b_1;c_1\right)\)là 1 nghiệm của pt đã cho
Chứng minh tương tự như vậy ta rút ra kết luận là x ; y ; z luôn chia hết cho \(2^n\left(n\in N\right)\)
Điều này chỉ đúng với x = y = z = 0
Mà pt đã cho cần có nghiệm nguyên dương nên x = y = z = 0 (loại )
Vậy pt vô nghiệm
VD 1 em có giải lúc trước trong trang Phương trình nghiệm nguyên rồi mà!
VD2: Kí hiệu pt trên là (*)
Dễ thấy \(x^3⋮5\) nên x chia hết cho 5. Đặt \(x=5x_1\)
Phương trình trở thành: \(125x_1^3+5y^3=25z^3\Leftrightarrow25x_1^3+y^3=5z^3\) (1)
Dễ thấy \(y^3⋮5\Rightarrow y⋮5\) . Đặt \(y=5y_1\) . Phương trình (1) tương đương với:
\(25x_1^3+125y_1^3=5z^3\Leftrightarrow5x_1^3+25y_1^3=z^3\) (2)
Dễ thấy \(z^3⋮5\Rightarrow z⋮5\). Đặt \(z=5z_1\). Phương trình (2) tương đương với:
\(5x_1^3+25y_1^3=125z_1^3\Leftrightarrow x_1^3+5y_1^3=25z_1^3\)
\(\Rightarrow\text{Nếu (x;y;z) là nghiệm của (*)}\)
Thì \(\left(\frac{x}{5};\frac{y}{5};\frac{z}{5}\right)\) cũng là nghiệm của (*)
\(\Rightarrow\left(\frac{x}{5^k};\frac{y}{5^k};\frac{z}{5^k}\right)\text{ với }k\inℕ^∗\text{cũng là nghiệm của (*)}\)
Điều này chỉ xảy ra khi x = y = z = 0.
Mà nó không thỏa mãn đk x, y, z nguyên dương nên loại.
PT (*) vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
ko biết