Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
x_<2--> x+1/2_<5/2 mà -|x-2/3|_<0 nên Max N = 5/2 khi và chỉ khi x=2
\(-\left|x-\frac{2}{3}\right|\le0\Rightarrow\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}\)
\(\Rightarrow x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}+x\le\frac{1}{2}+2=\frac{5}{2}\)
Dấu "=" xảy ra <=> x=2/3
Vậy MaxN=5/2 <=>x=2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)
Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)
\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)
- Đề ghi ko hiểu ?
b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)
\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\)
\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra khi:
\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi:
\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ Ta có: \(P=\frac{2}{6-m}\)\(\le2\left(\forall m\in Z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow6-m=1\Rightarrow m=5\).
Vậy Max P =2 khi m = 5.
2/ Ta có: \(Q=\frac{8-n}{n-3}\ge0\left(\forall n\in Z\right)\)
Dấu "=" xảy ra \(\Leftrightarrow8-n=0\Rightarrow n=8.\)
Vậy Min Q = 0 khi n = 8.
Chúc bn hc tốt!^_^.
Nhớ kb và cho tớ nhé mọi người!
1/ta có :2/6-m max
suy ra:6-m>0,6-m min
suy ra:6-m=1
suy ra: m=5
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\dfrac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{matrix}\right.\)
\(MAX_D\Rightarrow MIN_{3\left|x\right|-1}\)
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(\Rightarrow MAX_D=\dfrac{2.\left|\dfrac{2}{3}\right|+3}{3.\left|\dfrac{2}{3}\right|-1}=\dfrac{\dfrac{13}{3}}{1}=\dfrac{13}{3}\)
Để \(B=\dfrac{1}{2\left(n-1\right)+3}\) lớn nhất
=> \(2\left(n-1\right)+3\) nhỏ nhất \(\in\) N*
<=> \(2\left(n-1\right)+3=1\)
<=> \(2\left(n-1\right)=-2\)
<=> \(n-1=-1\Rightarrow n=0\)
Vậy \(B=\dfrac{1}{2\left(n-1\right)+3}\) đạt GTLN khi \(n=0\)