Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cô giáo cho đề thế nào thì ghi đủ ra đừng thiếu 1 chữ nào đi bạn.
Nhìn đề là biết thiếu rồi :)
Cho khơi khơi như vầy thì A chỉ có min, không có max
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\left(x^2+y^2\right)^2-2x^2y^2\)
\(M=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
Áp dụng BĐT Cauchy:
\(x+y\ge2\sqrt{xy}\)\(\Rightarrow xy\le\frac{1}{4}\)
\(\Rightarrow M\ge\left[1-\frac{1}{2}\right]^2-2.\frac{1}{16}\)\(=\frac{1}{8}\)
\(M_{min}=\frac{1}{8}\Leftrightarrow x=y=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trần công Chánh | hs tích cực |
Lê Thị Hồng Thêm | hs chuyên cần |
Phan Thị Thùy Ngân | hs siêng năng |
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-y=y^2-x\)
=>x^2-y^2-y+x=0
=>(x-y)(x+y)+(x-y)=0
=>(x-y)(x+y+1)=0
=>x+y=-1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]-6x^2y^2\)
\(=-1+3xy+3xy\left[1-2xy\right]-6x^2y^2\)
=-1+6xy-12x^2y^2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với x=2018 thì 2019=x+1
\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
ĐK: $x\neq 2019$
PT $\Rightarrow A(x-2019)^2=2019x$
$\Leftrightarrow Ax^2-x(4038A+2019)+A.2019^2=0(*)$
Vì biểu thức $A$ xác định nên PT $(*)$ có nghiệm.
$\Rightarrow \Delta=(4038A+2019)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow 2019^2(2A+1)^2-4A^2.2019^2\geq 0$
$\Leftrightarrow (2A+1)^2-(2A)^2\geq 0$
$\Leftrightarrow 4A+1\geq 0$
$\Leftrightarrow A\geq -\frac{1}{4}$
Vậy GTNN của $A$ là $\frac{-1}{4}$. $A$ không có GTLN
Vãi toán 8 sao đau nào thế @@