\(M=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2023

Ta có: \(M=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)

\(\Rightarrow M=1-\dfrac{3}{\sqrt{x}+2}\ge1-\dfrac{3}{2}=-\dfrac{1}{2}\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\Leftrightarrow x=0\)

KL:...

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

16 tháng 8 2017

câu này thiếu ngoặc rồi nha bn

16 tháng 8 2017

a) ĐKXĐ : x\(\ne\)1

rút gọn

B =( \(\dfrac{1}{x-\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x-1}}\)) : \(\dfrac{\sqrt{x}-1}{\left(\sqrt{x-1}\right)^2}\)

B=( \(\dfrac{1}{\sqrt{x}\left(\sqrt{x-1}\right)}\)+\(\dfrac{1}{\sqrt{x-1}}\)) : \(\dfrac{1}{\sqrt{x-1}}\)

B= \(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x-1}\right)}\).\(\dfrac{\sqrt{x-1}}{1}\)

B= \(\dfrac{1+\sqrt{x}}{\sqrt{x}}\)

a: \(P=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

b: \(P=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu '=' xảy ra khi x=1/4

14 tháng 7 2018

\(a.P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\left(x\ne1;x>0\right)\)

\(b.P=x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow P_{MIN}=\dfrac{3}{4}."="\Leftrightarrow x=\dfrac{1}{4}\)

14 tháng 7 2018

Để em làm câu c cho 2 chị :3

\(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\)

Để \(Q\in Z\Leftrightarrow\) \(\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\in Z\) . Do đó ta cần 2 điều kiện sau :

ĐK1 : \(2\sqrt{x}\) chia hết cho \(x\)

ĐK2 : \(x\) thuộc số chính phương : \(\left(0;1;4;9;.......\right)\)

Xét ĐK1 : Ta có : \(2\sqrt{x}\le x^2\)

Do vậy nên \(2\sqrt{x}\) chia hết cho \(x^2\) khi và chỉ khi \(2\sqrt{x}=x^2\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) ( Thỏa mãn )

Vậy \(x=0\) hoặc \(x=1\) thì \(Q\in Z\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 3:

Áp dụng BĐT Bunhiacopxky ta có:

\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)

\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)

\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)

\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)

Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)

\(A_{\max}=5\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 4:

Lời giải:

\(B=\sqrt{x-1}+\sqrt{5-x}\)

\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)

Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)

Mặt khác \(B\geq 0\)

Kết hợp cả hai điều trên suy ra \(B\geq 2\)

Vậy \(B_{\min}=2\).

Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)

---------------------------------------

\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)

\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)

Vì \(x^2\geq 0\forall x\in\mathbb{R}\)

\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)

Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)

Vậy \(A_{\min}=2\Leftrightarrow x=0\)

a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)

\(=\dfrac{4x^2}{x^2-1}\)

Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)

b: Để P/Q=0 thì P=0

=>x=0