
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(b,9x^2+90x+225-\left(x-y\right)^2\)
\(=\left(3x+15\right)^2-\left(x-y\right)^2\)
\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)
\(=\left(2x+y+15\right)\left(4x-y+15\right)\)

Bạn tham khảo tại link sau:
Câu hỏi của Lenkin san - Toán lớp 8 | Học trực tuyến

a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )
Nhận xét : \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)
Thay vào ( 1 ) ta có :
\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)
\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)
Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!
\(a)x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2+z^3-3xyz=0\)
\(\) \(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(\right.\) \(x^2+2xy+y^2-xz-yz+z^2-3xy)=0\)
Mà \(x+y+z=0\)
\(\Rightarrow0=0\left(đpcm)\right.\)
\(b)\left(x^2y^2+y^2z^2+x^2z^2+2\left.x^2yz+2xy^2z+2xyz^2\right)\right.=x^2y^2+y^2z^2+x^2z^2\)
\(\Leftrightarrow2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)
\(\Leftrightarrow2\left(x+y+z\right)\left(xyz\right)=0\)
Mà \(x+y+z=0\)
\(\Rightarrow0=0\left(đpcm\right)\)
\(c)\) Ta có:\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(\right.\) \(x^2yz+xy^2z+xyz^2)=0\)
\(\Rightarrow2\left(\right.\) \(xy+yz+xz^{})=-\left(\right.\) \(x^2+y^2+z^2)\)
\(\Rightarrow4\left(\right.\) \(xy+yz+xz)^2=\) \(x^4+y^4+z^4+2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(1\right)\)
Mà ta có: \(\left(xy+yz+xz\right)^2=x^2y^2+y^2z^2+x^2z^2\) (theo câu b)
\(\Leftrightarrow2\left(xy+yz+xz\right)^2=2\left(\right.\) \(x^2y^2+y^2z^2+x^2z^2)\left(2\right)\)
\(\left(1\right)-\left(2\right)\Leftrightarrow2\left(xy+yz+xz\right)^2=x^4+y^4+z^4\left(đpcm\right)\)

Xét \(VT=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=VP\)
Vậy ta có đpcm

x2y + xy2 + x2z + xz2 + y2z + yz2 +3xyz
=(x2y+x2z)+(xy2+xz2)+(y2z+yz2)+3xyz
=x2(y+z)+x(y2+z2)+yz(y+z)+2xyz+xyz
=x2(y+z)+x(y2+z2+2yz)+yz(y+z+x)
=(y+z)x(x+y+z)+yz(y+x+z)
=(x+y+z)(xy+xz+yz)
x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
=(x2y + xy2 + xyz) + (x2z + xyz + xz2) + (xyz + y2z + yz2)
=xy(x + y + z) + xz(x + y + z) + yz(x + y +z)
=(x + y + z)(xy + xz + yz)