\(\dfrac{\sqrt{x-2018}}{x}\)+\(\dfrac{\sqrt{y-2019...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

điều kiện xác định : \(x\ge2018;y\ge2019\)

\(\Rightarrow A=\dfrac{\sqrt{x-2018}}{x}+\dfrac{\sqrt{y-2019}}{y}\ge0\)

\(\Rightarrow A_{min}=0\) khi \(\left\{{}\begin{matrix}x-2018=0\\x-2019=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)

vậy ............................................................................................

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

Bài 1: 

\(A=\dfrac{2}{\sqrt{2017}+\sqrt{2015}}\)

\(B=\dfrac{2}{\sqrt{2019}+\sqrt{2017}}\)

mà \(\sqrt{2015}< \sqrt{2019}\)

nên A>B

10 tháng 8 2018

bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)

\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)

b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)

mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)

vậy \(Q^3>Q\)

10 tháng 8 2018

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn

Hoàng Lê Bảo NgọcTrần Việt Linh

cứu tôi với

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:

PT \(\Leftrightarrow 2\sqrt{x+2018}+2\sqrt{y-2019}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow (x+2018-2\sqrt{x+2018}+1)+(y-2019-2\sqrt{y-2019}+1)+(z-2-2\sqrt{z-2}+1)=0\)

\(\Leftrightarrow (\sqrt{x+2018}-1)^2+(\sqrt{y-2019}-1)^2+(\sqrt{z-2}-1)^2=0\)

\((\sqrt{x+2018}-1)^2\geq 0; (\sqrt{y-2019}-1)^2\geq 0; (\sqrt{z-2}-1)^2\geq 0\). Do đó để tổng của chúng bằng $0$ thì:

\((\sqrt{x+2018}-1)^2=(\sqrt{y-2019}-1)^2=(\sqrt{z-2}-1)^2= 0\)

\(\Rightarrow \left\{\begin{matrix} x=-2017\\ y=2020\\ z=3\end{matrix}\right.\)

19 tháng 12 2018

Ta có \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{2018}\Leftrightarrow2018x+2018y=xy\Leftrightarrow xy-2018x-2018y=0\Leftrightarrow xy-2018x-2018y+2018^2=2018^2\Leftrightarrow x\left(y-2018\right)-2018\left(y-2018\right)=2018^2\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\Leftrightarrow\sqrt{\left(x-2018\right)\left(y-2018\right)}=2018\Leftrightarrow2\sqrt{\left(x-2018\right)\left(y-2018\right)}=2.2018\Leftrightarrow x+y+2\sqrt{\left(x-2018\right)\left(y-2018\right)}=x+y+2.2018\Leftrightarrow x-2018+2\sqrt{\left(x-2018\right)\left(y-2018\right)}+y-2018=x+y\Leftrightarrow\left(\sqrt{x-2018}+\sqrt{y-2018}\right)^2=x+y\Leftrightarrow\sqrt{x-2018}+\sqrt{y-2018}=\sqrt{x+y}\Leftrightarrow\dfrac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}=1\Leftrightarrow P=1\)

Vậy nếu \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2018}\) thì \(P=1\)

29 tháng 9 2018

2.

\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)

\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)

Áp dụng BĐT AM-GM:

\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)

\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)

\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)

\("="\Leftrightarrow x=4038\)

25 tháng 11 2018

không phải bơ đâu, oan cho tớ quá :>

27/11 thi nên ít lên, với cả chị tớ cũng không cho chat :>
lấy mật khẩu của tớ vô đọc góc ib là biết mà :>

30 tháng 8 2018

Ta có:

\(\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}=\dfrac{2018}{\sqrt{2018}}+\dfrac{1}{\sqrt{2018}}+\dfrac{2019}{\sqrt{2019}}-\dfrac{1}{\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}+\left(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\right)\)

Do \(\dfrac{1}{\sqrt{2018}}>\dfrac{1}{\sqrt{2019}}\) nên \(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\) dương \(\Rightarrow\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)

31 tháng 8 2018

20192018+20182019=20182018+12018+2019201912019=2018+2019+(1201812019)20192018+20182019=20182018+12018+20192019−12019=2018+2019+(12018−12019)

Do 12018>1201912018>12019 nên 120181201912018−12019 dương 20192018+20182019>2018+2019