\(A=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

Ukm

It's very hard

l can't do it 

Sorry!

 
23 tháng 7 2021

Đk: \(x\ge0\)

a) Ta có: x = 16 => A = \(\frac{\sqrt{16}+5}{\sqrt{16}+2}=\frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}\)

\(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)=> \(\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

=> A = \(\frac{\sqrt{2}-1+5}{\sqrt{2}-1+2}=\frac{\sqrt{2}+4}{\sqrt{2}+2}=\frac{\sqrt{2}\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{4-\sqrt{2}-1}{2-1}=3-\sqrt{2}\)

b) A = 2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=2\) <=> \(\sqrt{x}+5=2\sqrt{x}+4\) <=> \(\sqrt{x}=1\) <=> x = 1 (tm)

\(A=\sqrt{x}+1\) <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=\sqrt{x}+1\) <=> \(\sqrt{x}+5=\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\)

<=> \(\sqrt{x}+5=x+3\sqrt{x}+2\) <=> \(x+2\sqrt{x}-3=0\)<=> \(x+3\sqrt{x}-\sqrt{x}-3=0\)

<=> \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\) <=> \(\sqrt{x}-1=0\)(vì \(\sqrt{x}+3>0\))

<=> \(x=1\)(tm)

c) Ta có: \(A=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)

Do \(\sqrt{x}+2\ge\) => \(\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\) => \(1+\frac{3}{\sqrt{x}+2}\le1+\frac{3}{2}=\frac{5}{2}\) => A \(\le\)5/2

Dấu "=" xảy ra<=> x = 0

Vậy MaxA = 5/2 <=> x = 0

16 tháng 10 2016

\(\frac{2}{P}+\sqrt{x}=\frac{-2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}+\sqrt{x}\)

= - \(2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)

\(\frac{-2}{\sqrt{x}}-2-\sqrt{x}\le-2-2\sqrt{2}\)

Đạt được khi x = 2

1 tháng 7 2019

Lời giải :

a) \(A=3\sqrt{x-1}+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)

Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)

\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)

\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)

\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

d) \(D=x-3\sqrt{x}+2\)

\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)

\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)

e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

1 tháng 7 2019

a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\) 

 \(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\) 

Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) 

Vậy Amin =7 tại x=1

3 tháng 1 2017

Tìm \(n\in N\) để \(3^{2n+1}+2^{4n+1}⋮25\)