Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=\frac{2m+1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{2m+1}{2}\)
Do \(x\in\left(-\frac{\pi}{6};\frac{5\pi}{6}\right)\Rightarrow x+\frac{\pi}{6}\in\left(0;\pi\right)\)
\(\Rightarrow0< sin\left(x+\frac{\pi}{6}\right)\le1\)
\(\Rightarrow0< \frac{2m+1}{2}\le1\)
\(\Rightarrow-\frac{1}{2}< m\le\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong khoảng đã cho \(tanx\) luôn dương nên ko cần tìm ĐKXĐ
\(\Leftrightarrow1+sinx+cosx+sin2x+cos2x=0\)
\(\Leftrightarrow sinx+cosx+2sinx.cosx+2cos^2x=0\)
\(\Leftrightarrow sinx+cosx+2cosx\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
Do \(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx>0\end{matrix}\right.\)
\(\Rightarrow\left(sinx+cosx\right)\left(2cosx+1\right)>0\)
Pt vô nghiệm trên \(\left(0;\frac{\pi}{2}\right)\)
xin lỗi : "để pt có nghiệm" nha bạn !
\(\Leftrightarrow2cos^2x-1-\left(2m-1\right)cosx-2m=0\)
\(\Leftrightarrow2cos^2x+cosx-1-2m\left(cosx+1\right)=0\)
\(\Leftrightarrow\left(cosx+1\right)\left(2cos-1\right)-2m\left(cosx+1\right)=0\)
\(\Leftrightarrow\left(cosx+1\right)\left(2cosx-2m-1\right)=0\)
\(\Leftrightarrow cosx=\frac{2m+1}{2}\)
Do \(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow0< cosx\le1\)
\(\Rightarrow0< \frac{2m+1}{2}\le1\Rightarrow-\frac{1}{2}< m\le\frac{1}{2}\)