Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
các bạn ơi đề này mình lỡ ấn sai rồi, nên các bạn ko cần giải nó nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(x^2+y^3\geq x^3+y^4\)
\(\Rightarrow x^2+y^3+y^2\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}\)
\(\Leftrightarrow x^2+y^3+y^2\geq x^3+2y^3\Leftrightarrow x^2+y^2\geq x^3+y^3(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x^3+y^3)(x+y)\geq (x^2+y^2)^2(2)\)
Từ \((1); (2)\Rightarrow (x^2+y^2)(x+y)\geq (x^3+y^3)(x+y)\geq (x^2+y^2)^2\)
\(\Leftrightarrow x+y\geq x^2+y^2(3)\)
Theo Bunhiacopxky: \((x^2+y^2)(1+1)\geq (x+y)^2(4)\)
Từ \((3); (4)\Rightarrow x+y\geq \frac{(x+y)^2}{2}\Rightarrow x+y\leq 2\)
Do đó: \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\Rightarrow \) đpcm.
Dấu bằng xảy ra khi $x=y=1$
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm:
\(3x^2-x-5=mx-1\Rightarrow3x^2-\left(m+1\right)x-4=0\)
\(ac=-12< 0\Rightarrow\) phương trình luôn có 2 nghiệm hay (d) luôn cắt (P) tại 2 điểm phân biệt
Theo định lý Viet: \(x_A+x_B=\frac{m+1}{3}\)
\(\Rightarrow y_A+y_B=mx_A-1+mx_B-1=m\left(x_A+x_B\right)-2=\frac{m^2+m-6}{3}\)
Mà tọa độ trung điểm I của AB có dạng: \(\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=\frac{m+1}{6}\\y_I=\frac{y_A+y_B}{2}=\frac{m^2+m-6}{6}\end{matrix}\right.\)
\(\Rightarrow\frac{m^2+m-6}{6}=\frac{m+1}{6}-1\)
\(\Rightarrow m^2=1\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)