Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đồ thị hàm số nhận Oy làm trục đối xứng khi nó là hàm chẵn
Dễ dàng nhận ra miền xác định của hàm số là 1 miền đối xứng
Khi x thuộc TXĐ, ta có:
\(f\left(-x\right)=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) (tất nhiên \(m\ne\pm1\))
\(f\left(-x\right)=f\left(x\right)\) \(\forall x\in D\)
\(\Leftrightarrow\frac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) \(\forall x\in D\)
\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}+\left(m^2+m-2\right)\sqrt{2018-x}=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)
Vậy \(m=-2\)

a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)
- Với \(m=1\) BPT vô nghiệm
- Với \(m=-1\) BPT luôn đúng
- Với \(m\ne\pm1\) BPT luôn có nghiệm
Vậy \(m=1\) thì BPT vô nghiệm
b/ \(\Leftrightarrow\left(m^2-3m+2\right)x\ge m-1\Leftrightarrow\left(m-1\right)\left(m-2\right)x\ge m-1\)
- Với \(m\ne\left\{1;2\right\}\) BPT luôn có nghiệm
- Với \(m=1\Rightarrow0\ge0\) BPT có nghiệm
- Với \(m=2\Rightarrow0\ge1\) BPT vô nghiệm
Vậy \(m=2\) thì BPT vô nghiệm
c/ \(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)
- Với \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) BPT vô nghiệm
- Với \(-2< m< 2\) BPT luôn đúng
Vậy \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) thì BPT vô nghiệm
d/ \(\Leftrightarrow\left(m+2\right)x>m^2+4m+4=\left(m+2\right)^2\)
Với \(m=-2\) BPT vô nghiêm
Với \(m\ne-2\) BPT luôn có nghiệm
Vậy \(m=-2\) thì BPT vô nghiệm

\(y\left(\frac{3}{4}\right)=y\left(-\frac{3}{4}\right)=\frac{1}{8}\)
Nhìn vào đồ thị, để pt \(\left|2x^2-3\left|x\right|+1\right|=m\) có 8 nghiệm pb thì \(0< m< \frac{1}{8}\)

\(y=2\left|x+1\right|-3>=-3\)
Dấu = xảy ra khi x=-1
2|x+1|>3
=>|x+1|>3/2
=>x+1>3/2 hoặc x+1<-3/2
=>x<-5/2 hoặc x>1/2

Đỉnh parabol : \(I\left(1;-m^2-m-2\right)\) nằm trên đt y = x - 3 \(\Leftrightarrow x=1;y=-m^2-m-2\) t/m ct h/s :
\(-m^2-m-2=1-3\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)(loại m = 0)
\(\Leftrightarrow f\left(x\right)=x^3+\left(m^2-4m\right)x^2+mx+m-4\) là hàm lẻ
Ta có:
\(f\left(-x\right)=-x^3+\left(m^2-4m\right)x^2-mx+m-4\)
Để hàm đã cho lẻ
\(\Leftrightarrow f\left(x\right)=-f\left(-x\right)\) với mọi x
\(\Leftrightarrow x^3+\left(m^2-4m\right)x^2+mx+m-4=x^3-\left(m^2-4m\right)x^2+mx-m+4\)
\(\Leftrightarrow2\left(m^2-4m\right)x^2+2m-8=0\) ; \(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m=0\\2m-8=0\end{matrix}\right.\)
\(\Leftrightarrow m=4\)