Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Giả sử hai đường thẳng cắt nhau tại điểm M(x0; y0) trên trục tung
=> x0 = 0 => Thay toạ độ của M vào 2 đường thẳng ta có: (d): y0 = m và (d'): y0 = 3 - 2m
Xét phương trình hoành độ giao điểm: m = 3 - 2m ⇔ 3m = 3 ⇔ m = 1
=> Với m = 1 thì 2 đường thẳng cắt nhau tại điểm trên trục tung
2. Với m = 1 => y0 = 1 => 2 đường thẳng cắt nhau tại điểm M(0; 1)

Gọi giao điểm của 2 đường thẳng đó trên trục tung là A( 0;a )
Khi đó tọa độ điểm A( 0;a ) thỏa mãn hpt \(\hept{\begin{cases}a=m^2+1\\a=5\end{cases}}\)
\(\Rightarrow m^2+1=5\)
\(\Rightarrow m^2=4\)
\(\Rightarrow m=\pm2\)
Vậy \(m=\pm2\)

bài 1: d1 cắt d2 tại 1 điểm trên trục tung => \(a\ne a';b=b'\)
<=> \(m\ne3\)và \(5-m=m-1\Leftrightarrow2m=6\Leftrightarrow m=3\)(k t/m dk) => k có m thỏa mãn để d1 cắt d2 tại 1 điểm trên trục tung.
bài 2:ĐK: m khác -1
hoành độ giao điểm A là nghiệm của pt:
\(\left(m+1\right)x^2=3x+1\Leftrightarrow\left(m+1\right)x^2-3x+1=0\)(1)
tại 1 điểm có hoành độ =2 => thay x=2 vào pt (1) ta có: \(4\left(m+1\right)-6+1=0\Leftrightarrow4m+4-6+1=0\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)(t/m đk)
=> 2 đồ thị cắt nhau tại.... bằng 2 <=> m=1/4

để 2 đường thẳng y = (2m-1)x – 3 và y=mx+m^2- 4m cắt nhau tại một điểm nằm trên trục tung.<=>2m-1\(\ne\)m(*) ; -3=m^2-4m(**)
từ(*)=>2m-m≠1<=>m≠1
từ (**)
=> m^2-4m+3=0
<=>(m-1)(m-3)=0<=>m=1(loại) hoặc m=3(thỏa mãn)
vậy m=3 thì đường thẳng y = (2m-1)x – 3 và y=mx+m2- 4m cắt nhau tại một điểm nằm trên trục tung.
Phương trình hoành độ giao điểm của hai đường thẳng đã cho:
\(\left(2m-1\right)x-3=mx+m^2-4m\)
Do hai đường thẳng này cắt nhau tại một điểm trên trục tung nên giao điểm của chúng có hoành độ bằng 0
\(\Rightarrow m^2-4m=-3\)
\(\Leftrightarrow m^2-4m+3=0\)
Do \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow m=1;m=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Vậy \(m=1;m=3\) thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)

1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Để 2 đường cắt nhau tại trục tung thì
m-1<>2 và m^2+3=4m
=>m<>3 và m^2-4m+3=0
=>m=1