![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.
Giả thiết tương đương với:
\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).
Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).
Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.
Vậy max p = 5 khi x = y = 2.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow2x^2+\left(y+1\right)^2+3x\left(y+1\right)+1=0\)
Đặt y+1=a
\(\Rightarrow2x^2+a^2+3ax=-1\)
\(\Leftrightarrow\left(2x+a\right)\left(x+a\right)=-1\)
Tự giải tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) ≥ 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
![](https://rs.olm.vn/images/avt/0.png?1311)
+, Nếu x,y đều khác 3
=> x và y đều ko chia hết cho 3
=> x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2
Mà 3xy chia hết cho 3
=> x^2+3xy+y^2 chia 3 dư 2
=> x^2+3xy+y^2 ko phải số chính phương
=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3
Gia sử x chia hết cho 3
=> x=3
=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9
Đặt A = k^2 ( k thuộc N )
<=> y^2+9y+9 = k^2
<=> 4y^2+36y+36 = (2k)2
<=> (2y+9)^2 - 45 = (2k)^2
<=> (2y+9)-(2k)^2 = 45
<=> (2y-2k+9).(2y+2k+9) = 45
Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3
Tk mk nha