Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hai số nguyên đối nhau thì thỏa mãn đề bài, ví dụ: 2\( \vdots \)(-2)và (-2)\( \vdots \)2
![](https://rs.olm.vn/images/avt/0.png?1311)
có , vd: -1 chia hết cho 1 ; 1 chia hết cho -1
tóm lại , đó là 2 số nguyên đối nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Số tự nhiên a nhỏ nhất khác 0 và a ⋮ 28 và a ⋮ 32
Do đó a = BCNN(28, 32)
28 = 22.7
32 = 25
Thừa số nguyên tố chung là 2, thừa số nguyên tố riêng là 7. Số mũ lớn nhất của 2 là 5, của 7 là 1
Nên a = BCNN(28, 32) = 25.7 = 224.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.
Ta có: 84 = 22.3.7
180 = 22. 32.5
ƯCLN(84, 180) = 22. 3 = 12
=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Mà a > 6.
=> a = 12.
Vậy tập hợp A = {12}
b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300
Ta có: \(12 = 2^2. 3; 15 = 3.5; 18 = 2.3^2\)
\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)
=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}
Mà 0 < b < 300
=> b = 180
Vậy tập hợp B = {180}
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:a \(⋮\) b và b \(⋮\) a
Vì a chia hết cho b nên a là bội của b mà b cũng chia hết cho a nên b là bội của a.
Suy ra a = b hoặc a = -b (a, b ≠ 0)
Mà a và b là hai số nguyên khác nhau nên a = - b hay a và b là số đối của nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
nhầm
nếu a là số nguyên tố(snt) mà a chia hết cho b mà b thuộc snt thì a là hợp số
ko tồn tại a và b
mình nghĩ là vậy
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :18=2.32; 135=32 .5.7
UCLN(18,315)=32=9
B(9)={0;9;18;27;....}
mà 5 < x ≤11
⇒x= 9 (tm)
\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)
\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).
Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)
Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} = - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)
Vậy \(a = - b\) và \(b = - a\). Hay a và b là hai số đối nhau và khác nhau.
Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.