![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu
![](https://rs.olm.vn/images/avt/0.png?1311)
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A\left(x\right)=-1+5^6-6x^2-5-9x^6+4x^4-3x^2\)
\(=-9x^6+4x^4-\left(3x^2+6x^2\right)+\left(5^6-1-5\right)\)
\(=-9x^6+4x^4-9x^2+\left(5^6-1-5\right)-15619\)
\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)
\(=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)
\(=-4x^6+4x^4-9x^2-4x+2\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(-9x^6+4x^4-9x^2-15619\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)
\(=-9x^6+4x^4-9x^2-15619+4x^6-4x^4+9x^2+4x-2\)
\(=-5x^6+4x-15621\)
Hình như C(x) vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
A = x2 - 4x + 7
= x( x - 4 ) + 7
Vì x( x - 4 ) \(\le\)0
=> Để x( x - 4 ) + 7 \(\le\)7
=> A \(\ge\)- 7
Vậy GTNN A = - 7 khi x( x - 4 ) = - 7
Ta có : A = x2 - 4x + 7
= x2 - 4x + 4 + 3
A = (x - 2)2 + 3
Vì : \(\left(x-2\right)^2\ge0\forall x\)
Nên : A = (x - 2)2 + 3 \(\ge3\forall x\)
Vậy Amin = 3 khi x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: A(x) = -1 + 56 - 6x2 - 5 - 9x6 + 4x4 - 3x2
= (-1 + 15625 - 5) + (-6x2 - 3x2 ) - 9x6 + 4x4
= 15619 - 9x2 - 9x6 + 4x4
Sắp xếp: A(x) = -9x6 + 4x4 - 9x2 + 15619
Lại có: B(x) = 2 - 5x2 + 3x4 - 4x2 + 3x + x4 - 4x6 - 7x
= 2 + (-5x2 - 4x2 ) + (3x4 +x4 ) - 4x6 + (3x - 7x)
= 2 - 9x2 + 4x4 - 4x6 - 4x
Sắp xếp: B(x) = -4x6 + 4x4 - 9x2 - 4x + 2
b) Ta có: A (x) = -9x6 + 4x4 - 9x2 + 15619
B (x) = -4x6 + 4x4 - 9x2 - 4x + 2
=> C(x) = -5x6 - 4x + 15617
Mk chỉ làm đc đến thế này thôi!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a, \(x^2-6x+10=x^2-3x-3x+9+1\)
\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy................... (đpcm)
b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)\)
\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)
\(=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)
Vậy............... (đpcm)
Chúc bạn học tốt!!!
Bài 2:
a, \(P=x^2-2x+5\)
\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\)ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x=1\)
Vậy........
b, Xem lại đề.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x;y\in R\)ta có:
\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).
Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy............
Chúc bạn học tốt!!!
a)\(A=x^2-4x+15\)
\(A=x^2-2x-2x+4+9\)
\(A=x\left(x-2\right)-2\left(x-2\right)+9\)
\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Vậy Min A = 9 <=> x = 2
b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Min B = 0 <=> x = 0
c)\(C=x^2+y^2+4x+6y+20\)
\(C=x^2+4x+4+y^2+6y+9+7\)
\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra khi : x = -2 ; y = -3
Vậy Min C = 7 <=> x = -2 ; y = -3
\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2
\(C=x^2+y^2+4x+6y+20\)
\(=x^2+4x+4+y^2+6y+9+7\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+7\)
Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3