Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cách khác. Không dùng điều kiện đề bài cho luôn.
\(Q=3x^2+3xy+y^2=\left(3x^2+3xy+\dfrac{3y^2}{4}\right)+\dfrac{y^2}{4}\)
\(=3\left(x+\dfrac{y}{2}\right)^2+\dfrac{y^2}{4}\ge0\)
Dấu = xảy ra khi \(x=y=0\)
Từ đề bài thì: \(x+y\ge0\)
\(\Rightarrow y\ge-x\)
Ta có:
\(Q=3x^2+3xy+y^2=\left(x+y\right)^2+2x^2+xy\)
\(\ge2x^2+xy\ge2x^2-x^2\)
\(=x^2\ge0\)
Vậy GTNN là Q = 0 đạt được khi \(x=y=0\)

\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Bài này dùng cô si điểm rơi
Mình đoán là x=1 y=1/2
Có A=(2x^2+2/x+2/x)+(16y^2+2/y+2/y)-2/x-1/y
áp dụng cô si 3 số vào 2 cái ngoặc đầu rồi tính ra(*)
còn -2/x-1/y=-(2/x+1/y)=-(2/x+2/2y)
áp dụng bđt svac vào 2/x+2/2y>=8/x+2y
mà x+2y>=2
nên -2/x-1/y>=-4(**)
tóm laị A>=14
dấu bằng xảy ra khi x=1 y=1/2
Chúc bạn học tốt!

2)a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c)\(a^3+b^3-a^2b-ab^2=a^2\left(a-b\right)-b^2\left(a-b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\\ \Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
b)\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3a^b+3ab^2\\ \Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)

\(A=x^2+4y^2+x^2+\frac{1}{x}+\frac{1}{x}+12y^2+\frac{3}{2y}+\frac{3}{2y}\)
\(A\ge\frac{\left(x+2y\right)^2}{2}+3\sqrt[3]{\frac{x^2}{x^2}}+3\sqrt[3]{\frac{12y^2.3.3}{2y.2y}}\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
a.
\(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\ge2\forall x\)
Vì \(x\ge1\) nên GTNN của biểu thức trên bằng 11 khi x = 1
b.
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
Vì \(x\ge2\) nên GTNN của biểu thức trên bằng 5 khi x=2
c.
\(x^2-3x+5=x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)
Vì \(x\ge2\) nên GTNN của biểu thức trên bằng 3 khi x = 2