
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu

A = x2 + 4x + 9
= ( x2 + 4x + 4 ) + 5
= ( x + 2 )2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 5 <=> x = -2
B = x2 + 6x + 12
= ( x2 + 6x + 9 ) + 3
= ( x + 3 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinB = 3 <=> x = -3
C = x2 + 3x + 6
= ( x2 + 3x + 9/4 ) + 15/4
= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2
=> MinC = 15/4 <=> x = -3/2
D = x2 + 5x + 10
= ( x2 + 5x + 25/4 ) + 15/4
= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinD = 15/4 <=> x = -5/2
E = 2x2 + 7x + 5
= 2( x2 + 7/2x + 49/16 ) - 9/8
= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x
Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4
=> MinE = -9/8 <=> x = -7/4
F = 3x2 + 8x + 9
= 3( x2 + 8/3x + 16/9 ) + 11/3
= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x
Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3
=> MinF = 11/3 <=> x = -4/3

a) Đặt A = x2 + 6x + 25 = x2 + 6x + 9 + 16 = (x + 3)2 + 16 \(\ge16\)
Dấu "=" xảy ra khi x + 3 = 0
\(\Rightarrow x=-3\)
Vậy Min A = 16 khi x = -3
b) Đặt B = x2 - 4x + 10 = x2 - 4x + 4 + 6 = (x - 2)2 + 6 \(\ge6\)
Dấu "=" xảy ra khi x - 2 = 0
\(\Rightarrow\)x = 2
Vậy Min B = 6 khi x = 2
c) Đặt C = x2 + y2 - 2x + 8y - 20
= (x2 - 2x + 1) + (y2 + 8y + 16) - 37
= (x - 1)2 + (y + 4)2 - 37 \(\ge-37\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}\)
Vậy Min C = -37 khi x = 1 ; y = - 4


a) \(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 khi x = 2
b) B = \(2x^2-4x-6=2\left(x^2-2x-3\right)=2\left(x^2-2x+1\right)-8=2\left(x-1\right)^2-8\)
\(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2-8\ge-8\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
Vậy BMin = -8 khi x = 1
c) C = \(3x^2+9x+6=3\left(x^2+3x+2\right)=3\left(x^2+3x+\frac{9}{4}\right)-\frac{3}{4}=3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow3\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\ge-\frac{3}{4}\forall x\)
Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2
Vậy CMin = -3/4 khi x = -3/2
d) D = \(5x^2+5x+1=5\left(x^2+x+\frac{1}{5}\right)=5\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}=5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow5\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
Vậy DMin = -1/4 khi x = -1/2

1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)