\(\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(E=\frac{5-3x}{4x-8}\)

\(=\frac{-3x+5}{4x-8}\)

\(=\frac14\cdot\frac{-12x+20}{4x-8}=\frac14\left(\frac{-12x+24-4}{4x-8}\right)=\frac14\left(-3-\frac{4}{4x-8}\right)\)

\(=\frac14\left(-3-\frac{1}{x-2}\right)\)

Để E có giá trị nhỏ nhất thì \(-3-\frac{1}{x-2}\) nhỏ nhất

=>\(-\frac{1}{x-2}\) nhỏ nhất

=>\(\frac{1}{x-2}\) lớn nhất

=>x-2=1

=>x=3

=>\(E_{\max}=\frac14\left(-3-\frac{1}{3-2}\right)=\frac14\left(-3-\frac11\right)=\frac14\cdot\left(-4\right)=-1\)

16 tháng 4 2021

E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất

⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)

⇔x=\(\dfrac{9}{4}\) 

Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)

NV
15 tháng 4 2019

Bài 1:

\(A=\left|3x-2\right|+\left|5-3x\right|\ge\left|3x-2+5-3x\right|=3\)

\(\Rightarrow A_{min}=3\) khi \(\frac{2}{3}\le x\le\frac{5}{3}\)

Bài 2:

Đặt \(t=\frac{2x+1}{x-3}\Rightarrow t\left(x-3\right)=2x+1\Rightarrow tx-3t=2x+1\)

\(\Rightarrow x\left(t-2\right)=3t+1\Rightarrow x=\frac{3t+1}{t-2}\) (\(t\ne2\))

Thay vào bài toán ta được:

\(f\left(t\right)=\frac{\frac{3t+1}{t-2}+2}{\frac{3t+1}{t-2}-2}=\frac{3t+1+2\left(t-2\right)}{3t+1-2\left(t-2\right)}=\frac{5t-3}{t+5}\)

Vậy \(f\left(x\right)=\frac{5x-3}{x+5}\)

22 tháng 9 2017

Ta có : x = 12

Kết quả nhỏ nhất là 1