\(A=4x^2+5y^2-4xy-16y+22\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(A=4x^2+5y^2-4xy-16y+22\)

\(=\left(4x^2-4xy+y^2\right)+\left(4y^2-16y+16\right)+6\)

\(=\left(2x-y\right)^2+4\left(y^2-4y+4\right)+6\)

\(=\left(2x-y\right)^2+4\left(y-2\right)^2+6\ge6\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy Min A là : \(6\Leftrightarrow x=1;y=2\)

30 tháng 9 2018

ai fix lại giúp e với :

\(\forall x;y\)

2 tháng 12 2019

Có P = x2 + 5y2 + 4xy + 6x + 16y + 32

         = [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19

         = [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19

         = (x + 2y + 3)2 + (y + 2)2 + 19

Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y

         (y + 2)2 ≥ 0 với mọi y

=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y

=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y

=> P ≥ 19 với mọi x; y

Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0

Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó

18 tháng 7 2018

\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)

\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)

\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)

18 tháng 7 2018

\(A=x^2+5y^2+4xy+2x+12\)

\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)

\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Vậy giá trị nhỏ nhất  của biểu thức A =7 

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

S
22 tháng 8

\(M=x^2-4xy-2x+5y^2+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2-\left(2y+1\right)^2+5y^2+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left\lbrack5y^2-\left(2y+1\right)^2\right\rbrack+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left(y^2-4x-1\right)+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left(y-2\right)^2+2019\ge2019\forall x\)

\(\begin{cases}y-2=0\\ \left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2=0\end{cases}\Rightarrow\begin{cases}y=2\\ \left\lbrack x-\left(2\cdot2+1\right)^{}\right\rbrack^2=0\end{cases}\Rightarrow\begin{cases}y=2\\ x=5\end{cases}\)

vậy minM = 2019 khi x = 5; y = 2

S
22 tháng 8

\(M=x^2-4xy-2x+5y^2+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2-\left(2y+1\right)^2+5y^2+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left\lbrack5y^2-\left(2y+1\right)^2\right\rbrack+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left(y^2-4x-1\right)+2024\)

\(=\left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2+\left(y-2\right)^2+2019\ge2019\forall x\)

\(\begin{cases}y-2=0\\ \left\lbrack x-\left(2y+1\right)^{}\right\rbrack^2=0\end{cases}\Rightarrow\begin{cases}y=2\\ \left\lbrack x-\left(2\cdot2+1\right)^{}\right\rbrack^2=0\end{cases}\Rightarrow\begin{cases}y=2\\ x=5\end{cases}\)

vậy minM = 2019 khi x = 5; y = 2

17 tháng 7 2018

\(R=x^2-4xy+5y^2+10x-22y+28\)

\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)

\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow R\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...

Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!

7 tháng 6 2017

\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

khi \(x=\frac{1}{3},y=\frac{1}{6}\)

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

3 tháng 11 2024

H= (2x+y)^2 - 2(2x+y) + 1+ y^2 - 2y + 1 + 1

H= (2x+y+1)^2 + (y+2)^2 + 1 

Min h là 1