\(\left|x+2,7\right|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

\(\left|x+2,7\right|\ge0\forall x\\ \Rightarrow A=3,5+\left|x+2,7\right|\ge3,5\forall x\)

Dấu "=" xảy ra khi: \(\left|x+2,7\right|=0\Rightarrow x+2,7=0\Rightarrow x=-2,7\)

3 tháng 9 2017

3,5 \(\forall\)x là sao

10 tháng 6 2017

\(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất

\(\Rightarrow\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7

10 tháng 6 2017

Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)

Ta có: \(\left|x+2,8\right|=3,5\)

\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)

Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0

7 tháng 2 2020

\(E=1,5-\left|2,7-x\right|\)

Ta thấy : \(\left|2,7-x\right|\ge0\)

\(\Leftrightarrow E=1,5-\left|2,7-x\right|\le1,5\)

Dấu " = " xảy ra 

\(\Leftrightarrow2,7-x=0\)

\(\Leftrightarrow x=2,7\)

Vậy \(Max_E=1,5\Leftrightarrow x=2,7\)

-|x+5|<=0 với mọi x

=>3,5-|x+5|<=3,5

=>E>=1/3,5=1:7/2=2/7

dấu "=" xảy ra khi và chỉ khi x+5=0

=>x=-5

vậy GTNN của E=2/7 tại x=-5

5 tháng 7 2017

a) Ta có: \(\left|x-3,5\right|\ge0\) với mọi x

\(\Rightarrow-\left|x-3,5\right|\le0\) với mọi x

\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 3,5

Vậy MAX A = 0,5 khi x = 3,5

b) Ta có : \(\left|1,4-x\right|\ge0\) với mọi x

\(\Rightarrow-\left|1,4-x\right|\le0\) với mọi x

\(\Rightarrow-\left|1,4-x\right|-2\le-2\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 1,4

Vậy MAX B = -2 khi x = 1,4

13 tháng 6 2017

\(A=0,5-\left|x-3,5\right|\)

Ta có \(\left|x-3,5\right|\)\(\ge\)0 Với mọi x

\(\Rightarrow\) 0,5-\(\left|x-3,5\right|\)\(\le\)0,5 Với mọi x

\(\Rightarrow Amax\) =0,5 khi x-3,5=0

\(\Leftrightarrow\) Amax=0,5 khi x=3,5

B thì tương tự

2 tháng 8 2017

Q có giá trị dương nhỏ nhất  => Q=1

=> 1/(3,5-|x+5|)=1 <=> 3,5-|x+5|=1 <=> |x+5|=2,5 => x+5=2,5 hoặc x+5=-2,5

=> x=-2,5 hoặc -7,5.

2 tháng 8 2017

Để số đó là số dương nhỏ nhất thì

l x + 5 l >= 0 ( vm x )

3,5 - l x + 5 l >= 3,5 ( vm x)

1 / 3,5 - l x + 5 l =< 1/3,5

Dấu "=" xảy ra khi và chỉ khi x + 5 = 0 => x = - 5

Vậy x = -5 thì Q đạt giá trị dương nhỏ nhất

15 tháng 5 2016

Bài 1:a/ 1.6-Ix-0.2I=0

Có 2 trường hợp:

TH1: x-0.2=1.6

=> x=1.6+0.2=1.8

TH2: x-0.2=-1.6

=> x=-1.4

b/ Có 2 trường hợp:

TH1:x-1.5=0=>x=1.5

TH2: 2.5-x=0=> x=2.5

Bài 2: a/ Vì Ix-3.5I\(\ge0\)

=> Amax=0.5-0=0.5 khi x=3.5

          b/ Vì -I1.4-xI \(\le0\)

Nên Bmax=0-2=-2 khi x=1.4

23 tháng 4 2019

a)  \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất \(=-1\)

b) \(\left(x-2\right)^2+5\ge5\)

\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy giá trị lớn nhất \(=\frac{3}{5}\)

6 tháng 11 2018

\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)

\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)

\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)

\(A\ge\left|x-2016\right|+2\ge2\)

\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)