
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(3x^2+x-6=3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)-\frac{1}{12}-6=3\left(x+\frac{1}{6}\right)^2-6\frac{1}{12}\)
Ta có \(3\left(x+\frac{1}{6}\right)^2\ge0=>3\left(x+\frac{1}{6}\right)^2-6\frac{1}{12}\ge-6\frac{1}{12}\)
Dấu "=" xảy ra khi \(x+\frac{1}{6}=0=>x=-\frac{1}{6}\)
Vậy ...
\(3x^2+x-6=3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)-\frac{1}{12}-6=3\left(x+\frac{1}{6}\right)^2-6\frac{1}{12}\)
\(3x^2+x-6=3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)-\frac{1}{12}-6=3\left(x+\frac{1}{6}\right)^2-6\frac{1}{12}\)
\(3x^2+x-6=3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)-\frac{1}{12}-6=3\left(x+\frac{1}{6}\right)^2-6\frac{1}{12}\)

làm a) h thi làm tiêp k thi nghỉ khỏe
a) = x2 -2x +1 +4 = (x-1)2 + 4
vậy GTNN = 4

Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)

Đặt \(A=2x^2-5x+1\)
\(\Rightarrow2A=4x^2-10x+2\)
\(=\left(2x\right)^2-2.\frac{5}{2}.2x+\frac{25}{4}-\frac{17}{4}\)
\(=\left(2x-\frac{5}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)
\(\Rightarrow A\ge-\frac{17}{8}\)
Dấu "=" \(\Leftrightarrow2x=\frac{5}{2}\Leftrightarrow x=\frac{5}{4}\)
Vậy /............

A = 2x2 - 5x + 2
= 2( x2 - 5/2x + 25/16 ) - 9/8
= 2( x - 5/4 )2 - 9/8 ≥ -9/8 ∀ x
Đẳng thức xảy ra <=> x = 5/4
=> MinA = -9/8, đạt được khi x = 5/4
\(A=2x^2-5x+2\)
\(=2\left(x^2-\frac{5}{2}x+1\right)\)
\(=2\left(x^2-2x\frac{5}{4}+\frac{25}{16}\right)-\frac{9}{8}\)
\(=2\left(x-\frac{5}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\)
Dấu"=" xảy ra khi \(x-\frac{5}{4}=0\Rightarrow x=\frac{5}{4}\)
Vậy \(Min_A=-\frac{9}{8}\Leftrightarrow x=\frac{5}{4}\)

G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020
G = ( 4x2 + 8xy + 4y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) + 2018
G = ( 2x + 2y )2 + ( x - 1 )2 + ( y + 1 )2 + 2018
\(\hept{\begin{cases}\left(2x+2y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
=> MinG = 2018 <=> x = 1 ; y = -1
=2(x^2-5/2x)
=2(x^2-2*x*5/4+25/16-25/16)
=2(x-5/4)^2-25/8>=-25/8
Dấu = xảy ra khi x=5/4