Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải
Không mất tính tổng quát,giả sử \(x\ge y\)
Suy ra \(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)
Suy ra \(1\le y\le10\)..Thay vào từng giá trị của y là ok! (Chú ý đk x,y nguyên)
Cách khác:(đưa về pt ước số)
Quy đồng lên,ta có: \(\frac{x+y}{xy}=\frac{1}{5}\Rightarrow5\left(x+y\right)=xy\)
\(\Rightarrow xy-5x-5y=0\)
\(\Leftrightarrow xy-5x-5y+5=5\) (thêm 5 vào mỗi vế)
\(\Leftrightarrow\left(x-5\right)\left(y-5\right)=5\)
Lập bảng xét ước=) cái này quá quen thuộc rồi=)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> ban se co:
(x + y)/xy = 1/5
hay 5(x + y) = xy
hay 5x + 5y - xy =0
hayx(5 -y) = - 5y
hay x = 5y/(y - 5)
hay x = 5/(1 - 5/y)
vi 5 >0 => de x , y nguyen duong <=> 1 - 5y > 0 va x , y khac 0
va 1 - 5/y thuoc uoc cua 5 (+- 1 ; +-5)
ma` ta chi lay 1-5y > 0 => 1-5y = 1 hay 1- 5y = 5
=> y = 0 ( loai) va y = -4/5 (loai)
=> ko co x, y thoa man dieu kien de bai
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{5}\Leftrightarrow5x+5y=xy\)
\(\Leftrightarrow xy-5x-5y=0\Leftrightarrow x\left(y-5\right)-5\left(y-5\right)-25=0\)
\(\Leftrightarrow\left(x-5\right)\left(y-5\right)=25\)
Phân tích 25 = 1.25 = 5.5 = .....
Xét từng cặp số cho mỗi trường hợp , ví dụ : \(\hept{\begin{cases}x-5=5\\y-5=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=10\end{cases}}\)
Các trường hợp còn lại làm tương tự :)
mk có một cách khác các bạn xem nhé:
ta có:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\left(x,y\ne0\right)\Leftrightarrow\frac{1}{x}=\frac{1}{5}-\frac{1}{y}\Leftrightarrow\frac{1}{x}=\frac{y-5}{5y}\)
\(\Leftrightarrow5y=x\left(y-5\right)\Rightarrow5y=xy-5x\Leftrightarrow xy-5x=5y\)
\(\Leftrightarrow xy=5x+5y\Rightarrow xy=5\left(x+y\right)\)
Nếu x=y ta có:
\(xy=5\left(x+y\right)\Leftrightarrow x^2=5\times2x\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=10\end{cases}}\)( loại th x=0 vì \(x,y\ne0\))
nên x=10 mà x=y nên y = 10
Nếu \(x\ne y\)thì
\(xy=5\left(x+y\right)\)(vô lí) vớ mọi x,y
vậy x=y=10
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm