![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có (3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 +7\(\ge\)7 với mọi x
=> \(\frac{1}{5\left(3-x\right)^2+7}\)\(\le\) \(\frac{1}{7}\) với mọi x
Dấu "=" xảy ra <=> (3-x)2=0 <=> 3-x=0 <=> x=3
Vậy GTLN của A bằng \(\frac{1}{7}\)<=> x=3
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm GTNN: a) \(x^2+4x+5=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\)với mọi x nên GTNN của biểu thức là 1 đạt được khi x = -2
Tìm GTLN: a) \(3-x^{2004}\)
Vì \(x^{2004}\ge0\)với mọi x \(\Rightarrow-x^{2004}\le0\)với mọi x
\(\Rightarrow\)GTLN của biểu thức là 3 đạt được khi x= 0
c) \(8-2x-x^2=-\left(x^2+2x-8\right)=-\left(x^2+2x+1-9\right)\)
\(=-\left[\left(x+1\right)^2-9\right]=-\left(x+1\right)^2+9\)
Vì \(-\left(x+1\right)^2\le0\)với mọi x
\(\Rightarrow\)GTLN của biểu thức là 9 đạt được khi x = -1
Đặt A=8/ x^2 - 2x +5.
Để A đạt giá trị lớn nhất thid x^2 - 2x + 5 phải đạt giá trị nhỏ nhất.
Ta có: x^2 - 2x +5= (x^2 - 2x + 1) + 4=(x - 1)^2 +4
Vì (x - 1)^2 \(\ge\)0 nên (x - 1)^2 + 4\(\ge\)4
=> Min x^2 - 2x + 5=4
=>Max A=8/4=2 <=> (x - 1)^2=0
<=> x = 1
Vậy Max A= 2 khi và chỉ khi x=1
TA có 8/x^2-2x+5=8/x^2-2x+1+4=8/(x-1)^2+4
Vì (x-1)^2 >= 0=> (x-1)^2+4>=4 =>8/(x-1)^2+4<=2 => 8/x^2-2x+5<=2
Dấu = xảy ra khi và chỉ khi x-1=0
x=1
Vậy GTLN của bt là 2 khi x=1