\(2^{10}+1\)

b)\(3^{20}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:

Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath

29 tháng 10 2016

Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này

2 tháng 9

Bài 1:

a; 2\(^{2009}\) = (2\(^4\))\(^{502}\).2 = \(\overline{..6}^{502}\).2 = \(\overline{..2}\)

b; \(3^{2010}\) = \(\left(3^4\right)^{502}\).3\(^2\) = \(\overline{..1^{^{}}}\) \(^{502}\).9 = \(\overline{..9}\)

c; 9\(^{999}\) = \(\left(9^2\right)^{499}\).9 = \(\overline{..1}\).9 = \(\overline{..9}\)

d; 134\(^{345}\) = (134\(^2\))\(^{172}\).134 = \(\overline{..6}\) \(^{172}\) .134 = \(\overline{..4}\)

e; 167\(^{421}\) = (167\(^4\))\(^{105}\).167 = \(\overline{..1}\) \(^{105}\).7 = \(\overline{..7}\)


19 tháng 10 2017

A=2^100-1

suy ra A<2^100

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

5 tháng 7 2016

Nếu mik giải c có k cho mik k

5 tháng 7 2016

nếu mik trả lời thì bn có k cho mik k

22 tháng 8

Bài 6:

Với \(a=0\), ta có \(10^0+168=1+168=169=13^2\) , do đó ta tìm được cặp \(\left(a,b\right)=\left(0,13\right)\).

Với \(a\ge1\) thì \(10^{a}\) có chữ số tận cùng là 0, do đó \(10^{a}+168\) sẽ có chữ số tận cùng là 8, trong khi vế phải \(b^2\) lại là một số chính phương không thể có chữ số tận cùng là 8, mâu thuẫn. Vậy với \(a\ge1\) thì không có cặp \(\left(a,b\right)\) thỏa mãn điều kiện đã cho.

Vậy ta tìm được cặp số \(\left(a,b\right)\) duy nhất là \(\left(0,13\right)\).

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

14 tháng 3 2019

\(S=1+3^1+3^2+...+3^{30}\)

\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)

\(S=1+3.10+3^2.10+...+3^{28}.10\)

Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0

\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1

=> Chữ số tận cùng của S là 1.