![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này khó quá mình ko biết giải.có bạn nào biết giải chỉ mình với
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2006^x=2005^y+2004^z>1\)
\(\Rightarrow x\ge1\)
Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ
nên \(2004^z\) là số lẻ
\(\Rightarrow z=0\)
Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)
Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\)
Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.
Vậy \(x=y=1;z=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9.
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1)
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý)
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý)
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004
cách 2
thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu
---------------
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦
---
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6
tương tự có VP tận cùng là 9
=> không tồn tại x, y, z sao cho tm ♦
----------
Nếu đề bài là + 1980^z thì VT chỉ tận cùng là 0, 1, 2, 3, 4, 5, 6, 7 và ta cũng có kết luận tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2016^z+2017^y=2018^x\)
\(\text{TH1 : z = 0}\)
\(\Leftrightarrow2016^0+2017^y=2018^x\)
\(\Leftrightarrow1+2017^y=2018^x\)
\(\Leftrightarrow y=1;x=1\)
\(\text{TH2 : y = 0}\)
\(\Leftrightarrow2016^z+2017^0=2018^x\)
\(\Leftrightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)
\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Leftrightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)
Gợi ý: 2017y là số lẻ
2016z và 2018x là số chẵn trừ khi x=0 ; z=0
Mà 2018x= 2017y + 2016z
=> y=0
=> 2018x=2016z+1
Mặt khác 2018x >= 2016z
Dấu bằng xảy ra <=> x=0;z=0
Thử lại: 1 = 2 vô lí
Vậy không có x;y;z; là số tự nhiên thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
thế này nha
khi y , z > 1 thì vế phải lẻ mà x lẻ khi và chỉ khi x =1 khi này thì k thỏa mãn
tương tự xét với x âm
rùi xét x=y=z = 1 thì t/m => x=y=z = 1
ah nhầm tìm x,y,z thuộc N nên k phải xét trường hợp âm
mình thay câu thứ 2 là x lẻ -> vế tría lẻ nha
Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0
không có trường hợp nào