Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học
4. Bấm tổng sigma Shift + log
x = 1
cái số ở trên là 100
trong ngoặc là \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)
kết quả: 0.07461166509
![](https://rs.olm.vn/images/avt/0.png?1311)
Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,
HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ
mn giúp em với ạ! Cảm ơn nhiều !
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)
\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)
\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)
Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.
Ta có 53 = 49 + 4 và \(y+3\ge3\)
Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)
Vậy không tồn tại số cần tìm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??
![](https://rs.olm.vn/images/avt/0.png?1311)
ta thấy ab2=(a+b)3 nên ab là lập phương 1 số ,a+b là bình phương 1 số
ta có:a\(\supseteq\)9,b\(\supseteq\)9 nên a+b\(\supseteq\)18
nên a+b có thể là 4 ,9, 16
xét a+b=4 thì không có giá trị a,b nào phù hợp để ab là số lập phương
xét a+b=9 thid a,b có giá trị phù hợp là 2,7 thì được ab=27 (thỏa mãn)
xét a+b=16 thì cũng không có giá trị nào phù hợp
vậy a=2,b=7 thì thỏa mãn
Vì \(\left(a+b\right)^3\) là SCP
=> Đặt \(a+b=x^2\)
=> \(\overline{ab}^2=x^6\)
<=> \(\overline{ab}=x^3\)
Vì \(10\le\overline{ab}\le99\) => \(x^2\in\left\{27;64\right\}\Rightarrow x\in\left\{3;4\right\}\)
Nếu x = 3 => \(\overline{ab}=27\)
<=> \(\overline{ab}^2=27^2=9^3=\left(2+7\right)^3\left(tm\right)\)
Nếu x = 4 => \(\overline{ab}=64\)
<=> \(\overline{ab}^2=64^2=16^3\ne\left(6+4\right)^3\) => loại
Vậy SCT là 27, xem bài mình nè, chiều đi học nhé:))
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\overline{abc}⋮10\)nên\(c=0\). Suy ra:\(\overline{ab0}=10\left(a^2+b^2\right)\Rightarrow\overline{ab}=a^2+b^2\Rightarrow10a+b=a^2+b^2\Rightarrow10a-a^2=b\left(b-1\right)\)
Vì b(b-1) chẵn, 10a chẵn nên a chẵn. Suy ra: a=2;4;6;8. Lần lượt thủ các trường hợp ta ko tìm được số nào thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
=> 4(10x+y) =4xy= 4(x2-1)+ 4(y2-1). Khai triển chuyển vế và nộp lại ta có: (2x-12)2+ (2y-3)2 =145=122 + 12=82+ 92
Ta có: -10=(2.1-12)<=(2x-12)<=(2.9-12)=7
-3=(2.0-3)<=(2y-3)<=(2.9-3)=15
=> 2x-12=-8=> 2y-3=9=> x=2 và y=6=> xy=26
\(\overline{xy}=\left(x-1\right)^2+\left(y-1\right)^2\)
\(4\overline{xy}=4\left[\left(x-1\right)^2+\left(y-1\right)^2\right]\)
\(4\left(10x+y\right)=4\left(x^2-2x+1\right)+4\left(y^2-2y+1\right)\)
\(40x+4y-4x^2+8x-4-4y^2+8y-4=0\)
\(4x^2-48x+144+4y^2-12y+9=145\)
\(\left(2x-12\right)^2+\left(2y-3\right)^2=12^2+1^2=8^2+9^2\)
Xét các TH:
\(\left\{{}\begin{matrix}\left|2x-12\right|=12\\\left|2y-3\right|=1\end{matrix}\right.\)(giải thì hệ này không thỏa mãn điều kiện)
\(\left\{{}\begin{matrix}\left|2x-12\right|=1\\\left|2y-3\right|=12\end{matrix}\right.\)(Hệ này cũng không thỏa mãn điều kiện)
\(\left\{{}\begin{matrix}\left|2x-12\right|=8\\\left|2y-3\right|=9\end{matrix}\right.\)( Nhận nghiệm x=2;y=6)
\(\left\{{}\begin{matrix}\left|2x-12\right|=9\\\left|2y-3\right|=8\end{matrix}\right.\)(Hệ này không thỏa mãn điều kiện)
Vậy\(\overline{xy}=26\)
\(\left\{{}\begin{matrix}a=3\\b=8\end{matrix}\right.\)