K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(x^2-6y^2=1\)
⇒ \(x^2-1=6y^2\)
⇒ \(y^2=\dfrac{x^2-1}{6}\)
Nhận thấy y2 ∈ Ư của x2 - 1⋮6
⇒ y2 là số chẵn
Mà y là số nguyên tố → y = 2
Thay vào, ta có:
\(x^2-1=4\cdot6=24\)
⇒ \(x^2=25\) → x = 5
Vậy x=5 ; y=2
xin tích
 

18 tháng 10 2023

Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.

18 tháng 10 2023

cop

9 tháng 1 2024

loading...

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

12 tháng 2

1 đúng nhưng phải giải rõ ràng ra thì mới hiểu

18 tháng 10 2023

Sorry bạn nhưng mình từng giải bài này

Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.