Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nói vô nghiệm thì nên xem lại,nói có nghiệm cũng nên xem lại,nói chung là xem lại!!!
Giải tiếp đây để thế cãi nhau chết con nhà người ta:v
\(\left(x+y\right)^2=\left(x+y\right)^1\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)^1=0\)
\(\Rightarrow\left(x+y\right)\left[\left(x+y\right)-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-y\\x+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=x^2+y^2\\y=2xy\end{matrix}\right.\Leftrightarrow x+y=x^2+2xy+y^2\)
\(\Rightarrow\left(x+y\right)^2=\left(x+y\right)^1\)
Đến đây giải được không????
![](https://rs.olm.vn/images/avt/0.png?1311)
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ \(x+y=4\Rightarrow y=4-x\)
\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)
Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)
Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0
Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
easy lắm
Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)
Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)
suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y
Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)
\(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)
\(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)
easy Hok tốt nhé b
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3
suy ra: x+y=27; y+z=36: z+x=39
ta có: x+y+z=51
suy ra:
x=51-(y+z)=51-36=15
y=51-(z+x)=51-39=12
z=51-(x+y)51-27=24
Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà
(x+y)2=(x+y)1(x+y)2=(x+y)1
⇒(x+y)2−(x+y)1=0⇒(x+y)2−(x+y)1=0
⇒(x+y)[(x+y)−1]=0⇒(x+y)[(x+y)−1]=0
⇒[x=−yx+y=1