Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra x = y = z .
mặt khác, theo giả thiết: x2017 = y2005 Nên x = y = 1. Vì :
- Nếu x = y > 1 : x2017> x2005 = y2005
- Nếu x = y < 1 thì : x2017 < x2005 = y2005
Vậy x = y = z = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)
\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)
Nếu \(x+y+z=0\)
\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)
Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)
Vậy................
![](https://rs.olm.vn/images/avt/0.png?1311)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)
=> \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)
=> \(\frac{x}{4}=2;\frac{y}{6}=2;\frac{z}{9}=2\)
=> \(x=8;y=12;z=18.\)
Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)
Lại có x + y + z = 38
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)
=> x = 8 ; y = 12 ; z = 18
đk(x,y,z khác 0)
Áp dụng dãy tỉ số = nhau , ta có
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{z+x+y}=1\Rightarrow x=y=z\)
thay vào giả thiết kia, ta có
\(x^{2017}-x^{2018}=0\Leftrightarrow x^{2017}\left(1-x\right)=0\Leftrightarrow x=1\) (vì x khác 0)
=>x=y=z=1
bn làm đúng rồi đó!