![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r
Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)
Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)
Xét p>3
Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2
Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)
Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)
Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1
==>p2+q2+r2=0(mod3)
Vậy ta có:(3,5,7)và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
giải
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Trần Ngọc Lan - Toán lớp 6 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\) p2 - q2 + r2 - s2 ⋮ 3
1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên p2 , q2 , r2 ,s2 chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8
Suy ra p2 - q2 + r2 - s2 ⋮24
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1)\)\(p+q+r=b^c+a+a^b+c+c^a+b\)
\(p+q+r=\left(a^b+a\right)+\left(b^c+b\right)+\left(c^a+c\right)\)
\(p+q+r=a\left(a^{b-1}+1\right)+b\left(b^{c-1}+1\right)+c\left(c^{a-1}+1\right)\)
Nếu a, b, c lẻ thì \(a^{b-1};b^{c-1};c^{a-1}\) lẻ và a, b, c chẵn thì các tích cũng chẵn
\(\Rightarrow\)\(p+q+r\) chẵn
Mà trong 3 số tự nhiên bất kì a, b, c sẽ có ít nhất 2 số cùng chẵn hoặc lẻ
Giả sử 2 số đó là a và b
Vì \(b^c\) và b cùng tính chẵn lẻ nên \(p=b^c+a\) chẵn ( lẻ + lẻ = chẵn hoặc chẵn + chẵn = chẵn )
Mà p là số nguyên tố nên \(p=2\)
\(a,b\inℕ^∗\) nên \(a=b=1\)
\(\Rightarrow\)\(q=a^b+c=1+c=c+1=c^a+b=r\)
Tương tự với b và c; c và a cùng tính chẵn lẻ thì đều có ít nhất 2 số bằng nhau ( đpcm )
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)