Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow x^4-x^3-2x^2-8x^3+8x^2+16x+15x^2-15x-30+a+30⋮x^2-x-2\)
=>a+30=0
=>a=-30
b: \(\Leftrightarrow2x^4-4x^2+4x^2-8+ax+b+8⋮x^2-2\)
=>a=0 và b=-8
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow x^4-9x^3+21x^2+x+k⋮x^2+x+2\)
\(\Leftrightarrow x^4+x^3+2x^2-10x^3-10x^2-20x+29x^2+29x+58-8x+k-58⋮x^2+x+2\)
=>-8x+k-58=0
=>k=8x+58
![](https://rs.olm.vn/images/avt/0.png?1311)
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow\)Để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)
\(\text{thì }\Rightarrow x^4-9x^3+21x^2+ax+b=\left(x^2-x-2\right)Q_{\left(x\right)}\\ =\left(x-2\right)\left(x+1\right)Q_{\left(x\right)}\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=2;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}28+2a+b=0\\31-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=-28\\a-b=31\end{matrix}\right.\\ \Leftrightarrow\left(2a+b\right)+\left(a-b\right)=-28+31\\ \Leftrightarrow3a=3\\ \Leftrightarrow a=1\\ \Leftrightarrow1-b=31\\ \Leftrightarrow b=-30\)
Vậy để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)
thì \(a=1;b=-30\)
Có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
=> Để đa thức:
\(A=x^4-9x^3+21x^2+x+a⋮x^2-x-2\)
<=> \(A⋮\left(x-2\right);A⋮\left(x+1\right)\)
+) S/dung lược đồ Hooc-le:
=> \(2\cdot15+a=0\Rightarrow a=-30\)
+)
=> \(\left(-1\right)\cdot\left(-30\right)+a=0\Rightarrow a=-30\)
Vậy a = -30 thì đa thức A chia hết cho x2 - x - 2