\(21x^2+x^4+x-9x^3+a\) chia hết cho x2-x-2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

Có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)

=> Để đa thức:

\(A=x^4-9x^3+21x^2+x+a⋮x^2-x-2\)

<=> \(A⋮\left(x-2\right);A⋮\left(x+1\right)\)

+) S/dung lược đồ Hooc-le:

1 -9 21 1 a
x=2 1 -7 7 15

=> \(2\cdot15+a=0\Rightarrow a=-30\)

+)

1 -9 21 1 a
x=-1 1 -10 31 -30

=> \(\left(-1\right)\cdot\left(-30\right)+a=0\Rightarrow a=-30\)

Vậy a = -30 thì đa thức A chia hết cho x2 - x - 2

a: \(\Leftrightarrow x^4-x^3-2x^2-8x^3+8x^2+16x+15x^2-15x-30+a+30⋮x^2-x-2\)

=>a+30=0

=>a=-30

b: \(\Leftrightarrow2x^4-4x^2+4x^2-8+ax+b+8⋮x^2-2\)

=>a=0 và b=-8

16 tháng 12 2022

\(\Leftrightarrow x^4-9x^3+21x^2+x+k⋮x^2+x+2\)

\(\Leftrightarrow x^4+x^3+2x^2-10x^3-10x^2-20x+29x^2+29x+58-8x+k-58⋮x^2+x+2\)

=>-8x+k-58=0

=>k=8x+58

6 tháng 8 2019

P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)

Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)

Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào  \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)

7 tháng 8 2019

Bổ sung cách 1 cho Khả Tâm

Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.

Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)

\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)

17 tháng 2 2018

Đặt đa thức thương là \(Q_{\left(x\right)}\)

\(\Rightarrow\)Để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)

\(\text{thì }\Rightarrow x^4-9x^3+21x^2+ax+b=\left(x^2-x-2\right)Q_{\left(x\right)}\\ =\left(x-2\right)\left(x+1\right)Q_{\left(x\right)}\)

Đẳng thức trên luôn đúng \(\forall x\)

nên lần lượt cho \(x=2;x=-1\)

\(\text{Ta được : }\left\{{}\begin{matrix}28+2a+b=0\\31-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=-28\\a-b=31\end{matrix}\right.\\ \Leftrightarrow\left(2a+b\right)+\left(a-b\right)=-28+31\\ \Leftrightarrow3a=3\\ \Leftrightarrow a=1\\ \Leftrightarrow1-b=31\\ \Leftrightarrow b=-30\)

Vậy để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)

thì \(a=1;b=-30\)