K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Ta có: a - b + c = 9

<=> - a + b - c = - 9

.........4a - 2b + c = 16

=> 3a - b = 7

......a + b + c = 7

=> 4a + c = 14

=> 4a = 14 - c

Tới đây thế vô tính được b, rồi tính tiếp a với c

4 tháng 2 2018

Thế 4a = 14 - c vào 4a - 2b + c = 16, ta được:

..........14 - c - 2b + c = 16

...........14 - 2b = 16

=> b = - 1

Thể b = - 1 vào 3a - b = 7, tính được a = 2

=> c = 6

Vậy ...............

8 tháng 10 2017

\(pt\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)

8 tháng 10 2017

ta có \(a^2+b^2+c^2=4a-2b+6b-14\)

\(\Leftrightarrow a^2+b^2+c^2-4a+2b-6c+14=0\)

\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6x+9\right)=0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)

Vì \(\left(a-2\right)^2\ge0\forall a\in R\)

\(\left(b+1\right)^2\ge0\forall b\in R\)

\(\left(c-3\right)^2\ge0\forall c\in R\)

Nên \(\hept{\begin{cases}a-2=0\Rightarrow a=2\\b+1=0\Rightarrow\\c-3=0\Rightarrow c=3\end{cases}b=-1}\)

Vậy a=2  ;  b=-1 ; c=3

11 tháng 9 2017

đề bai 

<=> \(a^2+b^2+c^2-4a-6c+2b+14=0\)

<=> \(\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)

<=> \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)

mà \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2\ge0\)

dấu = xảy ra <=> \(\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)

vậy ...

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

12 tháng 12 2017

Violympic toán 8

12 tháng 12 2017

Violympic toán 8

13 tháng 2 2017

Cộng vế vs vế của những đẳng thức đã cho

8 tháng 2 2017

=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1

<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2

<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2

-a-b-c-d=-2

-(a+b+c+d)=-2

=>a+b+c+d=2

Vậy a+b+c+d=2

10 tháng 2 2017

Bài này sai rồi bạn ơi violympic cho sai

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

10 tháng 2 2017

=4 nhé

10 tháng 2 2017

nó bảo sai bạn ạ