Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tích đó là:1x2x3...x50.Ta thấy :
+Nhóm 1x2x3x...x9 có 1 chữ số chắn x5(có 1 chữ số 0 tận cùng)
+Nhóm 10x11x12x...x19 có 10 và 1 chữ số chắn nhân vs 15 9cos 2 chữ số 0 tận cùng)
+Nhóm 20x21x22x...x29 có 20 và 24x25=600 (có 3 chữ số 0 tận cùng)
+Nhóm 30x31x32x...x39 có 30 và một số chẵn nhân vs 35 9cos 2 chữ số 0 tận cùng)
+Nhóm 40x41x42x...x49 có 40 và 1 số chẵn nhân vs 45 (có 2 chữ số 0 tận cùng)
+Sô 50 nhân vs 1 số chẵn có thêm 2 chữ số 0 tận cx nữa
Vậy tất cả có 12 chữ số 0 tận cùng
![](https://rs.olm.vn/images/avt/0.png?1311)
Cạnh hình vuông là một số nguyên, do đó diện tích của hình vuông chính là số chính phương ( vì diện tích hình vuông là bình phương của cạnh hình vuông).
Thấy: diện tích hình vuông là 1 số gồm 2001 chữ số 1, có tổng các chữ số là:
1.2001=20011.2001=2001
2001 là 1 số chia hết cho 3, vì vậy mỗi cạnh hình vuông đều phải chia hết cho 3, đặt cạnh hình vuông là 3k (k∈Z)
Diện tích là (3k)2=9k2
Như vậy diện tích là 1 số chia hết cho 9. Mà 2001 không chia hết cho 9
⇒Không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
Vậy không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cạnh hình vuông là một số nguyên, do đó diện tích của hình vuông chính là số chính phương ( vì diện tích hình vuông là bình phương của cạnh hình vuông).
Thấy: diện tích hình vuông là 1 số gồm 2001 chữ số 1, có tổng các chữ số là:
\(1.2001=2001\)
2001 là 1 số chia hết cho 3, vì vậy mỗi cạnh hình vuông đều phải chia hết cho 3, đặt cạnh hình vuông là 3k \(k\in Z\)
Diện tích là \(\left(3k\right)^2=9k^2\)
Như vậy diện tích là 1 số chia hết cho 9. Mà 2001 không chia hết cho 9
\(\Rightarrow\)Không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
Vậy không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left(a+1,b+2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
\(\Leftrightarrow\left(a,b\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(-2;-5\right);\left(-4;-3\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
xy+3x-7y=21
<=> x(y+3) -7y = 21
<=> x(y+3) = 21+7y
<=> x(y+3) = 7(y+3)
<=> (x-7)(y+3)=0
Suy ra nghiệm của ptr là
x=7, y tùy ý thuộc Z
x tùy ý thuộc Z, y=-3.
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi xóa bỏ chữ số 4 ở tận cùng bên phải của số lớn ta được số bé .Nghĩa là số lớn gấp 10 lần số bé thêm 4 đơn vị
số bé là ( 499 - 4 ) : ( 1+10 ) = 45
Đáp số: Số đó là 45
![](https://rs.olm.vn/images/avt/0.png?1311)
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Giải:
Tích 71 × 72 × ... × 80 có tận cùng 3 chữ số (vì 75 × với 1 số chia hết cho 4 trong khoảng này có tận cùng 2 chữ số 0, và 80 có 1 chữ số 5).
Tích 81 × 82 × ... × 90 có tận cùng 2 chữ số 0 (vì 85 × 82:có tận cùng 1 chữ số 0 và 90 có 1 chữ số 0).
Vậy tích T có tận cùng là : 3 + 2 = 5 (chữ số 0).