Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhiều thế bạn
Đăng từ từ thôi chứ
Đăng nhiều thế này làm sao mà xong kịp được
![](https://rs.olm.vn/images/avt/0.png?1311)
phần b tương tự phần a nên em làm câu a và c thôi :
a, \(M=1-2+2^2-2^3+...+2^{2012}\)
\(2M=2-2^2+2^3-2^4+...+2^{2013}\)
\(3M=2^{2013}+1\)
\(M=\frac{2^{2013}+1}{3}\)
c, \(E=2^{100}-2^{99}-2^{98}-...-1\)
\(E=2^{100}-\left(2^{99}+2^{98}+...+1\right)\)
đặt \(A=2^{99}+2^{98}+...+1\)
\(2A=2^{100}+2^{98}+...+2\)
\(2A-A=2^{100}-1\) hay \(A=2^{100}-1\)
ta có :
\(E=2^{100}-\left(2^{100}-1\right)\)
\(E=2^{100}-2^{100}+1=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
*) \(A=2^2-2^4+2^6-2^8+....+2^{98}-2^{100}\)
\(\Leftrightarrow4A=2^4-2^6+2^8-2^{10}+....+2^{100}-2^{101}\)
\(\Leftrightarrow5A=2^2-2^{101}\)
\(\Leftrightarrow A=\frac{2^2-2^{101}}{5}\)
*) \(B=3-3^3+3^5-3^7+...+3^{79}-3^{99}\)
làm tương tự