Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x,y,z lần lượt là số học sinh đạt điểm loại giỏi,khá,trung bình.
Theo bài ra ta có: \(x:y:z=7:5:4\)và \(x+y-z=120\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{4}=\frac{x+y-z}{7+5-4}=\frac{120}{8}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.7=105\\y=15.5=75\\z=15.4=60\end{cases}}\)
Vậy số hs đạt điểm giỏi là 105 em, số hs đạt điểm khá là 75em, số hs đạt điểm tb là 60 em
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh mỗi loại của khối 7 lần lượt là x,y,z( h/s, đk : x,y,z ∈ N*)
--> x/ 4= y/5=z/7 và x+y+z= 336
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/4=y/5=z/7 = x+y+z/4+5+7 = 336/16 = 21
Từ đó:
+, x/4 = 21--> x= 21.4= 84
+, y/5= 21--> y= 21.5= 105
+, z/7=21-->21.7= 147
Vậy số học sinh mỗi loại của khối 7 lần lượt là 84; 105; 147 ( h/s)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh giỏ, khá, trung bình lần lượt là a, b,c
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}\\a+b+c=48\end{matrix}\right.\)
áp dụng TCDTSBN ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{48}{12}=4\)
\(\dfrac{a}{4}=4\Rightarrow a=16\\ \dfrac{b}{5}=4\Rightarrow b=20\\ \dfrac{c}{3}=4\Rightarrow c=12\)
Vậy số học sinh giỏ, khá, trung bình của lớp 7A lần lượt là 16, 20,12 học sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh của ba lớp 7A loại Giỏi, Khá, TB lần lượt là a ; b ; c học sinh \(\left(a;b;c\ne0\right)\)
Vì số học sinh mỗi loại tỉ lệ với các số 3 ; 4 ; 5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Vì số học sinh lớp 7A là 48 \(\Rightarrow a+b+c=48\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{48}{12}=4\)
\(\Rightarrow\frac{a}{3}=4\Leftrightarrow a=4.3=12\left(hs\right)\) Vậy số học sinh ba loại Giỏi , Khá, TB lần lượt là
\(\Rightarrow\frac{b}{4}=4\Leftrightarrow b=4.4=16\left(hs\right)\) \(12;16\) và \(20\)
\(\Rightarrow\frac{c}{5}=4\Leftrightarrow c=4.5=20\left(hs\right)\)
Gọi số bài đạt Giỏi, Khá, Trung bình của lớp 7A lần lượt là: a;b;c (\(a;b;c\inℕ^∗\))
Theo đề ra, ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và \(a+b+c=48\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}a=4.3=12\\b=4.4=16\\c=4.5=20\end{cases}}\)
Vậy số bài kiểm tra loại Giỏi, Khá, Trung bình lần lượt là: 12;16;20 bài.
Sắp thi rùi, mình chúc bn thi tốt nha^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số hsg, hsk, hstb của khối 7 lần lượt là $a,b,c$. Theo bài ra ta có:
$a+b-c=45$
$\frac{a}{2}=\frac{b}{5}=\frac{c}{6}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{5}=\frac{c}{6}=\frac{a+b-c}{2+5-6}=\frac{45}{2+5-6}=45$
$\Rightarrow a=45.2=90; b=45.5=225; c=45.6=270$
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh giỏi , khá , trung bình lần lượt là : \(x;y;z\) (học sinh , \(x,y,z\in N\) )
Theo đề ra ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{6}\)
và \(x+y-z=45\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{2+5-6}=\dfrac{45}{1}=45\\ \Rightarrow\left\{{}\begin{matrix}x=45\times2=90\\y=5\times45=225\\z=6\times45=270\end{matrix}\right.\)
Vậy số học sinh giỏi khối 7 là 90 học sinh , số học sinh khá là 225 học sinh , học sinh trung bình là 270 học sinh
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c
Theo đề, ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c - a = 8
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)
=> a = 4.3 = 12; b = 4.4 = 16; c = 4.5 = 20
Vậy số học sinh giỏi, khá, trung bình của lớp 7A lần lượt là 12 học sinh, 16 học sinh, 20 học sinh.