Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


thôi chết mình viết nhầm nhé kết quả của nguyễn minh quang giống kết quả của mình

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)
\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)
\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)


SUy ra 2 trường hợp => từ 1 và 2 suy ra gì gì đó........
CHúc bạn hok tốt ;-;
Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:
\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)
Còn nếu từ số một suy ra số 2 thì :
\(2-2+1\)
\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)
\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)
\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)
\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)
\(=2-0+0\)
\(=2\)


\(7:a,\sqrt{2-x}=3\)
\(\left|2-x\right|=3^2=9\)
\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)
\(b,\sqrt{4-4x+x^2}=3\)
\(\sqrt{\left(2-x\right)^2}=3\)
\(\left|2-x\right|=3\)
\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)
\(c,\sqrt{4+x^2}+x=3\)
\(\sqrt{4+x^2}=3-x\)
\(4+x^2=\left(3-x\right)^2\)
\(4+x^2=9-6x+x^2\)
\(x=\frac{5}{6}\left(TM\right)\)
\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)
\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)
\(\sqrt{x-2}\left(2-4+3\right)=5\)
\(\sqrt{x-2}=5\)
\(\left|x-2\right|=25\)
\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)
đăng dễ dễ thoi idol
1: Giả sử \(2\ge a\ge b\ge c\ge1\).
BĐT cần cm tương đương \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\).
Ta có \(\dfrac{\left(a-b\right)\left(b-c\right)}{bc}\ge0\Leftrightarrow\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\);
\(\dfrac{\left(a-b\right)\left(b-c\right)}{ab}\ge0\Leftrightarrow1+\dfrac{c}{a}\ge\dfrac{c}{b}+\dfrac{b}{a}\).
Từ đó ta chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\Leftrightarrow\left(a-2c\right)\left(2a-c\right)\le0\).
Dễ thấy \(a\le2\le2c;2a\ge2\ge c\) nên ta có đpcm.
Đẳng thức xảy ra khi chẳng hạn a = 2; b = c = 1.