Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(AH^2=AM\cdot AB\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(AH^2=AN\cdot AC\left(2\right)\)
Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)
b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)
\(\Rightarrow MH=AN\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(HN^2=AN\cdot NC\)
Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(HM^2=AM\cdot MB\)
Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:
\(AN^2+HN^2=AH^2\)
Mà \(MH=AN\)
\(\Rightarrow MH^2+HN^2=AH^2\)
\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)
c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)
\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)
\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

Bài 1:
Áp dụng định lí pytago trong tam giác vuông ABC ta có:
BC2=AC2+AB2
BC2=42+32
BC=\(\sqrt{25}\)=5(cm)
Ta có:
Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)
Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)
Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)
Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)

A B C H
ta có : \(\left\{{}\begin{matrix}AH=b.sinC\\AH=c.sinB\end{matrix}\right.\) \(\Rightarrow b.sinC=c.sinB\Leftrightarrow\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
chứng minh tương tự với các đường cao kẻ từ \(B;C\)
\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)

Lời giải:
Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)
Mặt khác, theo công thức lượng giác:
\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)
BC=căn 3^2+4^2=5cm
AB/BC=3/5
AC/BC=4/5
AB/AC=3/4
AC/AB=4/3