Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. xét tam giác BAH và tam giác HAD có:
góc BHA = góc AHD = 900 (gt) ; HB = HD (gt)
AH chung
=> tam giác BAH = tam giác HAD (c.g.c)
=> AB = AD (cạnh tương ứng)
=> tam giác BAD cân tại A
2. hình như đề sai hay sao ý !!!!

Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuong góc với BC ( H thuộc BC ) Biết HI = 2cm HC= 3cm. Tính Chu vi tam giác ABC
a, tam giac BAD co AH vua la dung cao vua la dg trung truc nen do la tam giac can

Áp dụng định lí py ta go trong tam giác ABC ta có:
AB2+AC2=BC2
62+82=102
36+64=100
Suy ra tam giác ABC vuông (giải hộ câu a thôi tự nghĩ đi)

Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :BD = CEtam giác BHC cânAH lsf dduwognf trung trực của BCTrên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :
- BD = CE
- tam giác BHC cân
- AH lsf dduwognf trung trực của BC
- Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
a) Ta có: \frac{AB}{AD}=\frac{AC}{AE}=\frac{1}{2}ADAB=AEAC=21 → BC//DE
→ \frac{BC}{DE}=\frac{1}{2}\Rightarrow DE=2\cdot BC=14=18\left(cm\right)DEBC=21⇒DE=2⋅BC=14=18(cm)
AD = 2AB = 10 (cm); AE = 2AC = 14 (cm)
b) Ta có: \frac{AB}{AD}=\frac{AM}{AI}=\frac{1}{2}ADAB=AIAM=21 → DI//BM
mà M thuộc BC → DI//BC
c) Ta có: DE//BC (cmt) và DI//BC (cmt)
ta thấy qua điểm D nằm ngoài BC kẻ được 2 đường thẳng song song với BC, điều này trái với tiên đề Ơ-clít nên hai đường thẳng DE và DI phải trùng nhau
→ D, I, E cùng nằm trên một đường thẳng
→ D, I, E thẳng hàng